A primer to phylogenetic analysis using

Phylip package

Jarno Tuimala
Third Edition, 2004

PHYLIP -- Phylogeny Inference Package (Version 3.2).
Felsenstein, J. 1989. Cladistics 5: 164-166
Index

Index .. 3
Introduction ... 4
 Phylip .. 4
 User interphase ... 4
Getting started – datafiles and programs .. 5
 Always keep records ... 5
 Sequence alignment ... 5
 Font files ... 6
 Running Phylip programs .. 6
 Essential programs ... 7
Quick start ... 9
 Distance methods ... 9
 Tree drawing ... 11
 Amino acid sequences ... 12
Basic analyses in more detail ... 13
 Distance methods ... 13
 Parsimony methods ... 18
 Maximum likelihood methods ... 24
 Resampling procedure ... 27
 Drawing the tree ... 32
Advanced topics .. 34
 User trees ... 34
 Estimating transition/transversion ratio ... 36
 Estimating base frequencies ... 38
 Testing molecular clock ... 38
 Inferring ancient states of sequence sites ... 39
 Statistical tests of trees ... 40
 LogDet-distance .. 41
 Computing topological distances between trees 42
 Weighting ... 45
 Dnaml, HMM, gamma distribution and rate heterogeneity 47
 Multiple outgroups ... 48
 Error messages ... 48
 Scripting ... 50
Recommendations ... 52
 Pragmatic warnings (Brian Golding, McMaster University) 52
 Pitfalls (modified from PAUP documentation, Swofford 2002) 53
Phylip programs .. 55
Flow charts .. 56
Introduction

The purpose of this tutorial is to demonstrate how to use Phylip, a collection of phylogenetic analysis software, and some of the options that are available. This tutorial is not intended to be a course in phylogenetics, although some phylogenetic concepts will be discussed briefly. There are other books available which cover the theoretical sides of the phylogenetic analysis, but the actual data analysis work is less well covered.

Here we will mostly deal with molecular sequence data analysis in the current Phylip version 3.62.

Phylip

Phylip is a comprehensive phylogenetic analysis package created by Joseph Felsenstein at the University of Washington. This package can do many of the phylogenetic analyses available in the literature today. Methods that are available in the package include parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus trees. Data types that can be handled include molecular sequences, gene frequencies, restriction sites, distance matrices, and 0/1 (binary) discrete characters.

Phylip is freely available from http://evolution.genetics.washington.edu/phylip.html. It ships with a comprehensive manual covering the usage of different programs. If you’re using a Windows machine, installation is easy. Download the three zip-files (phylipw.zip, phylipx.zip, phylipy.zip), and extract them to a preferred directory. The subdirectory exe contains all the programs. Manual can be found from the subdirectory doc.

User interphase

The programs are controlled through a menu, which asks the users which options they want to set, and allows them to start the computation. The data are read into the program from a text file, which the user can prepare using any word processor or text editor (but it is important that this text file *not* be in the special format of that word processor - it should instead be in "flat ASCII" or "Text Only" format). Some sequence alignment programs, like ClustalX and T-Coffee, can write data files in the PHYLIP format.

Most of the programs look for the data in a file called "infile". If they do not find this file they then ask the user to type in the file name of the data file. Output is written onto special files with names like "outfile" and "treefile". Trees written onto "treefile" are in the Newick format, an informal standard agreed to in 1986 by authors of a number of major phylogeny packages (Felsenstein, PHYLIP documentation).
Always keep records
It very important to keep record of lab-procedures you have done, but it is even more so with computer analyses. You might easily get confused with many many result files, especially, if you have not given them informatic names. And, the computer can crash, or the hard-drive may become corrupt, and you can lose your work. After such insidents it is easier to recover the work you have done, if you have kept a good analysis record.

So, always keep records. It indicates you have been working.

Sequence alignment
Phylip programs read the aligned sequences in Phylip-format. Usually you can recognize the files in this format from the .phy-extension associated with the files. Aligned sequences in the suitable format can be produced, e.g., with ClustalX program, which is freely available from http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html. Just be sure that you save the aligned sequences in Phylip-format.

If you need to edit the alignment (with text-editor) or to do some analyses in the other programs that do not read Phylip-format, save the alignment also in the .aln-format (Clustal-format). The editing of the Clustal alignment format is easier than the editing of Phylip-format, and Clustal will readily read in the .aln-format, if you later need to convert the edited sequences into some other format.

Any multiple sequence alignment can also be manually reformatted with a text editor. The format requirements for Phylip are very stringent, and any deviation will result in a program that hangs, usually with the error message "Unable to allocate memory".

The file must confirm to the following (Felsenstein, PHYLIP documentation):

1. The file begins with the information about the number of sequences and the number of nucleotides or amino acids in the alignment.
2. The sequence names must be exactly 10 characters long - spaces are allowed in the end.
3. Gaps must be indicated by - .
4. Missing data or missing information (no sequence) is indicated by ?. This is especially important in the end of the data file. Gaps (-) in the end of the data file may lead the programs to crash.
5. Period was previously allowed but it is no longer allowed, because it sometimes is used in different senses in other programs.
6. Spaces between the alignment blocks are allowed. This normally makes the alignment more readable. Spaces are usually inserted into the alignment every 10 bases or amino acids.
7. Blanks will be ignored, and so will numerical digits. This allows GENBANK and EMBL sequence entries to be read with minimum editing.
Example of the formatted sequences:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Rabbit</td>
<td>?????????? ??????????C CAATCTACAC ACGGG-GTAG GGATTACATA</td>
</tr>
<tr>
<td>Human</td>
<td>AGCCACACCC TAGGGTGTCG CAATCTACCT CCAGGAGGAC GGAAGGGCAGG</td>
</tr>
<tr>
<td>Opossum</td>
<td>AGCCACACCC CAACCTTAGC CAATAGACAT CCAGAAGCCC AAAAGGCAAG</td>
</tr>
<tr>
<td>Chicken</td>
<td>GCCCGGGGAAA GAGGGAGGGC CCGCGCGG-GAG CCAGATAAAAG TGGGGACACA</td>
</tr>
<tr>
<td>Frog</td>
<td>GGATGGGAGAA TTAGAGCCTC TGTTCTTTTT GCGAGGCTAC AGAATAACCG</td>
</tr>
</tbody>
</table>

TTTGGATGGT AG---GATAT GGGCCTACCA TGGGTTAAC AGGT-AACGY
TTTCGACGGT AA---GGTAT TGGCTTACCAG TGGCAATGAC AGGT-GACCG
TTTCGACGGT AA---GGTAT TGGCTTACCAG TGGCAATGAC AGGT-GACGY
TTTCGACGGT AA---GGTAT TGGCTTACCAG TGGCAATGAC AGGT-GACGG
TTTCGATGGT AA---GGTAT TGGCTTACCAG TGGCAATGAC AGGT-GACGG

Possible ambiguities (such as N, Y or R nucleotides) are also handled correctly, and do not cause trouble.

Font files
In order to be able to use the tree-drawing tools, the font-files need to be in the same folder as the drawtree or drawgram program(s). If you are using Phylip on PC machine from the same directory it was installed in, you should not encounter any troubles. However, this is not strictly necessary, just remember to copy the font files with tree drawing programs to the same directory. Or, better still rename your favourite fontfile as “fontfile” and keep only it with the tree drawing programs. There are six different fonts available:

- font1 simple sans-serif Roman
- font2 medium quality sans-serif Roman
- font3 high quality sans-serif Roman
- font4 medium quality sans-serif Italic
- font5 high quality sans-serif Italic
- font6 Russian Cyrillic

Running Phylip programs
The programs are used in a sequential way. The output from the first program is used as an input in the next program. The trick is to know how to use the programs in suitable combinations. See the flow charts in the end of this book for some suggestions.

In windows, the Phylip programs can be invoked by double-clicking on the icon or by typing the name of the program on the command line. It is advisable to use programs from the command line, because then you will be better able to see, e.g., the appearing error messages. In NT-line Windows versions (NT, 2000 and XP) DOS prompt, i.e., command line, can be invoked from Start -> All Programs -> Accessories -> Command Prompt.

Most Phylip programs run in the same way. The input for a program is taken from a file called "infile" - if the program does not find this file it then asks the user to type in the file name of the data file. The results are written in a file called "outfile". Some programs may write both "outfile" and a file called "outtree" or "plotfile".
Because most of the programs use the default names for the input and output files, you need to be sure to rename the files you want to save before proceeding to further analysis. Otherwise you risk losing your results. For example, you get a distance matrix ("outfile") from the program dnadist, but you want to try different settings for the matrix calculations. Then, before doing the matrix calculation again, rename "outfile" with dnadist_out_F84 or something similar, so that you can tell different analysis results apart after you have ceased to work.

Essential programs
Here is a list of the programs that can be used for the molecular sequence data analysis. The programs are divided into the method categories. The choice of the correct analysis method is left for the user.

Distance methods
These programs are intended to be used sequentially. First a distance matrix is calculated by dnadist or protdist program from the multiple sequence alignment. The matrix is then transformed into a tree by fitch, kitsch or neighbor program. Programs dnadist and protdist create a file “outfile”. Before running fitch, kitsch or neighbor, “outfile” should be renamed, either as “infile” or with another file name. Fitch, kitsch and neighbor programs create both “outfile” and “outtree”.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnadist</td>
<td>DNA distance matrix calculation</td>
</tr>
<tr>
<td>protdist</td>
<td>Protein distance matrix calculation</td>
</tr>
<tr>
<td>fitch</td>
<td>Fitch-Margoliash tree drawing method without molecular clock</td>
</tr>
<tr>
<td>kitsch</td>
<td>Fitch-Margoliash tree drawing method with molecular clock</td>
</tr>
<tr>
<td>neighbor</td>
<td>Neighbor-Joining and UPGMA tree drawing method</td>
</tr>
</tbody>
</table>

Character based methods
These programs read in the sequence alignment, and produce either one or multiple trees in the output files "outfile" and "outtree".

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dna pars</td>
<td>DNA parsimony</td>
</tr>
<tr>
<td>dpenny</td>
<td>DNA parsimony using branch-and-bound</td>
</tr>
<tr>
<td>dnaml</td>
<td>DNA maximum likelihood without molecular clock</td>
</tr>
<tr>
<td>dnamlk</td>
<td>DNA maximum likelihood with molecular clock</td>
</tr>
<tr>
<td>protpars</td>
<td>Protein parsimony</td>
</tr>
<tr>
<td>proml</td>
<td>Protein maximum likelihood</td>
</tr>
</tbody>
</table>

Resampling tool
This program reads in a sequence alignment, and generates a specified number of random samples into a file “outfile”. These random samples are usually used in subsequent analysis as a sequence alignment file with the option M (“use multiple datasets”) turned on.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seqboot</td>
<td>Generates random samples by bootstrapping or jack-knifing</td>
</tr>
</tbody>
</table>
Tree drawing
These programs draw a tree from the specifications ("outtree") in the Newick-format. For example, the specification can be a file produced by the program dnaml. Drawgram and drawtree produce plotfile, whereas retree saves the result in a file “outtree” (so “outtree” can not be used as an input to this program).

drawgram Draws a rooted tree
drawtree Draws an unrooted tree
retree Interactive tree-rearrangement

Consensus trees
This program constructs a consensus tree from multiple trees. For example, dnapars can produce multiple trees, which can be summarized by the program Consense. Also the results of the bootstrapping are summarized by the program Consense as a majority rule tree.

consense Draws consensus trees from multiple trees

Tree distances
This program computes, e.g., a topology-based distance between two or more trees. The distance can be used to assess or compare the results from different analyses.

treedist Computes distances between trees based on tree topology
Quick start

Here a DNA sequence data is used as an example. In the example, three programs are used to construct and plot a tree by neighbor joining (a distance method) using the F84 evolutionary model. Details about other methods are available in the succeeding sections.

Distance methods

Align your DNA sequences and save the alignment in Phylip-format as “alignment.phy”. Start the program dnadist by typing “dnadist” to the command prompt or double clicking on the program’s icon.

First dnadist (and all the other programs also) checks whether there is a file “infile” in the directory you started the program in. If it does not find “infile” it asks you to type in the name of the sequence alignment file.

dnadist: can't find input file "infile"
Please enter a new file name> alignment.phy

All Phylip programs are menu-driven. Below is the menu written by dnadist. Every line in the menu starts with a capital letter or number. You can change the settings of the program by typing in the letter or the number in front of the option you would like to change. For example, typing “d” and pressing Enter, would cycle through different evolutionary models implemented in dnadist. After you are satisfied with the settings (for this quick start, do not change any options), you should type in “y” and press Enter. This starts the run.

Nucleic acid sequence Distance Matrix program, version 3.61

Settings for this run:

D Distance (F84, Kimura, Jukes-Cantor, LogDet)? F84
G Gamma distributed rates across sites? No
T Transition/transversion ratio? 2.0
C One category of substitution rates? Yes
W Use weights for sites? No
F Use empirical base frequencies? Yes
L Form of distance matrix? Square
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes

Y to accept these or type the letter for one to change

Y

Dnadist prints indications of the run (below). After it has finished calculating all the pairwise distances between the sequences, it tells you so (“Done.”). These pairwise distances are saved in a file “outfile”. The file contains just plain text, and you can rename the file as “outfile.txt” so that it open automatically in Notepad when you double-click it.
Distances calculated for species
 Rabbit
 Human ...
 Opossum ..
 Chicken .
 Frog

Distances written to file

Done.

Next, rename “outfile” as “infile”, and run the program neighbor (type in “neighbor”). The next menu should appear. Now, neighbor has read the pairwise distances from the file “infile”, and does not ask you for a new filename. You can again modify the settings to your liking, but for this quick start just type in “y” and press Enter.

Neighbor-Joining/UPGMA method version 3.61

Settings for this run:
 N Neighbor-joining or UPGMA tree? Neighbor-joining
 O Outgroup root? No, use as outgroup species 1
 L Lower-triangular data matrix? No
 R Upper-triangular data matrix? No
 S Subreplicates? No
 J Randomize input order of species? No. Use input order
 M Analyze multiple data sets? No
 0 Terminal type (IBM PC, ANSI, none)? IBM PC
 1 Print out the data at start of run No
 2 Print indications of progress of run Yes
 3 Print out tree Yes
 4 Write out trees onto tree file? Yes

Y to accept these or type the letter for one to change
y

Like dnadist, neighbor also prints out indications of the run. After completing the analysis, the program tells you so (“Done.”).

Cycle 2: OTU 4 (0.62698) joins OTU 5 (0.95492)
Cycle 1: OTU 3 (0.73871) joins node 4 (0.17009)
last cycle:
 OTU 1 (0.05116) joins OTU 2 (0.23064) joins node 3 (0.12944)

Output written on output file

Tree written on tree file

Done.

The tree is now contained in the files “outfile” and “outtree”. You can view the graphical tree in outfile by opening it in some text editor. Neighbor has now drawn the following tree from our example data set.
Next you can draw a nicer looking graphical tree from the file “outtree” using the program drawtree. First, rename the file “outtree” as “intree”, and start the program drawtree. Drawtree first searches for a file called “fontfile” from the current directory, and if it is unable to find it, it asks for the name of the fontfile. After specifying that, the menu of the program appears. Now, you should change the final plotting devise as MS-Windows Bitmap using the option P. Program also asks for the dimensions of the tree – you might initially try 640 x 400. The settings are accepted by typing in “y” and pressing Enter.

Tree drawing

Y to accept these or type the letter for one to change y
Drawtree opens a new window, where you can see a preview of the tree. If you’re satisfied with the results, select from the File-menu (in the same newly-opened window) “plot”. A new file (“plotfile”) should now appear in the current directory. If you rename it as “plotfile.bmp” you would be able to open it in some graphics package for more modifications.

The final picture looks like this:

![Image of a phylogenetic tree with labels: Frog, Chicken, Opossum, Human, Rabbit. The length of the branch is the number of nucleotide or amino acid changes that has happened in that particular branch in the tree. The number of changes is estimated using the evolutionary model specified in the dnadist program.]

Amino acid sequences

The sequence of the programs is similar to the presented one with one important exception. When using amino acid sequences for inferring phylogenies with distance methods, the distance matrix is calculated using program protdist, not dnadist.
Basic analyses in more detail

Before proceeding further, please read Getting started and Quick start. They contain relevant information, if you haven’t used Phylip earlier.

There are three different ways to analyze DNA or amino acid sequence data in Phylip. Parsimony and maximum likelihood are character based methods, which means that they treat every single site of the multiple sequence alignment independently. Distance methods summarize the differences between sequences by calculating a pairwise distance measure between all aligned sequences. After the data-analysis and tree-drawing, the validity of data can (or should, according to some) be assessed by a bootstrap analysis.

Here we present examples of these methods.

The programs can be invoked by double-clicking on their icons. If you have done some analyses before within the same folder, the program detects that "outfile" already exists, and it ask you to:

dnadist: the file "outfile" that you wanted to use as output file already exists.
Do you want to Replace it, Append to it, write to a new File, or Quit?
(please type R, A, F, or Q)

Replace means to overwrite, Append adds the new results in the end of an existing file, and File ask for a new file name. You can also quit, if you want to check the files before proceeding.

Distance methods
For the distance method analysis you'll need at least two programs. DNAdist or protdist calculates a matrix of pairwise distances between every sequence in the file. The tree is inferred from those distances by Neighbor, Fitch or Kitsch program.

DNA data
The DNAdist program writes out a menu:

Nucleic acid sequence Distance Matrix program, version 3.61

Settings for this run:
D Distance (F84, Kimura, Jukes-Cantor, LogDet)? F84
G Gamma distributed rates across sites? No
T Transition/transversion ratio? 2.0
C One category of substitution rates? Yes
W Use weights for sites? No
F Use empirical base frequencies? Yes
L Form of distance matrix? Square
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes

Y to accept these or type the letter for one to change
The settings can be changed by typing in the letter before the option, and pressing Return. For example, typing "d" and return, would cycle through the different distance calculation methods. These distances are also called evolutionary models. Evolutionary models are mathematical formulas which try to compensate for the multiple substitution problem and transition-transversion bias.

Briefly, Jukes-Cantor assumes that all substitutions are equally likely to happen. Kimura has two different change rates (rate parameters), one for transitions, and the other for transversions. These models also assume that the equilibrium frequencies of all the bases are 0.25. F84 has two rate parameters, one for transitions, and the other for transversions, but also allows the equilibrium frequencies of the bases to differ from each other. LogDet-distance should be used if there are (large) base frequency differences between sequences in the tree. The LogDet distance cannot cope with ambiguity codes. It must have completely defined sequences.

The transition/transversion ratio (s/v) can be modified if more detailed data is available on the s/v ratio. If not, the s/v ratio of 1-2 is often a good approximation of the situation with most of the genes.

Usually the phylogenetic methods assume that all the sites are evolving at the same speed. This is clearly an unrealistic assumption. For example, the third codon positions evolve with a higher speed than second positions. That is because most of the substitutions in the third position are selectively neutral whereas substitutions in the second codon position often lead to amino acid changes. This rate heterogeneity is often compensated by using gamma distribution. The shape of the gamma distribution is defined by a parameter alpha. If you activate option "g" you'll be prompted to enter this shape parameter:

Coefficient of variation of substitution rate among sites (must be positive)

In gamma distribution parameters, this is 1/(square root of alpha)

If you know alpha, you can calculate the prompted CV by the equations (Felsenstein, PHYLIP documentation):

\[
1 / \sqrt{\text{alpha}} = \text{CV} \\
\text{alpha} = (1 / \text{CV})^2
\]

A good approximation of the alpha for most of the protein encoding genes is 0.5, but you can also estimate this value using programs such as Treepuzzle, which is not a part of Phylip package. The use of the gamma distribution is still disputed, and you should be careful when using this option.

Another layer of rate variation also is available. The option "c" allows user-defined rate categories. The user is prompted for the number of user-defined rates, and for the rates themselves, which cannot be negative but can be zero. These numbers are defined relative to each other, so that if rates for three categories are set to 1 : 3 : 2.5 this would have the same meaning as setting them to 2 : 6 : 5. The assignment of rates to sites is then made by reading a file whose
default name is "categories". It should contain a string of digits 1 through 9. A new line or a blank can occur after any character in this string.

Thus the categories file might look like this:

```
122231111122411551155333333444
```

The user can assign categories of rates to each site (for example, we might want first, second, and third codon positions in a protein coding sequence to be three different categories. This is done with the categories input file and the option "c". We then specify (using the menu) the relative rates of evolution of sites in the different categories. For example, we might specify that first, second, and third positions evolve at relative rates of 1.0, 0.8, and 2.7 (Felsenstein, PHYLIP documentation).

The weights-option ("w") allows us to specify weights on the individual characters. The weights cause a character to be counted as if it were \(n \) characters, where \(n \) is the weight. By use of the weights we can give weight to some characters, and drop others from the analysis. In the molecular sequence programs only two values of the weights, 0 or 1 are allowed, except for dnapars, which accept weights from 0-9…35 (0-9 with numbers and 10-35 with letters). For more information, see the advanced analysis chapter. (Felsenstein, PHYLIP documentation)

If you want to specify the base frequencies by yourself, you can do that by invoking the option "f". The program then prompts you to type in the frequencies of different bases.

After you have modified the settings to your liking, you can calculate the distance matrix by typing "y" and pressing return.

This will produce a distance matrix with default name "outfile":

```
5

Rabbit  0.0000  0.2818  0.9386  0.9830  1.2617
Human   0.2818  0.0000  1.0795  1.1496  1.5312
Opossum 0.9386  1.0795  0.0000  1.5380  1.8615
Chicken 0.9830  1.1496  1.5380  0.0000  1.5819
Frog    1.2617  1.5312  1.8615  1.5819  0.0000
```

The "outfile" needs to be renamed, because the programs will go awry, if they try both read and write from and to the same file. After renaming this new file can be used as an input into the Neighbor, Fitch, or Kitsch program.
Neighbor writes out a menu, where you can again change the setting:

Neighbor-Joining/UPGMA method version 3.61

Settings for this run:
N Neighbor-joining or UPGMA tree? Neighbor-joining
O Outgroup root? No, use as outgroup species 1
L Lower-triangular data matrix? No
R Upper-triangular data matrix? No
S Subreplicates? No
J Randomize input order of species? No. Use input order
M Analyze multiple data sets? No
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes
3 Print out tree Yes
4 Write out trees onto tree file? Yes

Y to accept these or type the letter for one to change

At this point, you can specify the outgroup of the tree. Outgroup is usually the closest relative of all the taxa under investigation. For example, if human, chimpanzee and gorilla are under scrutiny, orangutan could be specified as an outgroup. In other words, the sister taxa of the ingroup is often used as an outgroup.

You can also randomize the input order of the sequences with option "j", jumble. Often the input order of the sequences affects the outcome of the analysis. This can be assessed by randomizing the input order. The program also asks you to specify the number of times you want to randomize the input order of the sequences. It is advisable to do jumbling at least 10-100 times, because it almost certainly improves the results.

Also Fitch writes out a menu, where setting can be modified, but the menu looks a bit different:

Fitch-Margoliash method version 3.61

Settings for this run:
D Method (F-M, Minimum Evolution)? Fitch-Margoliash
U Search for best tree? Yes
P Power? 2.00000
- Negative branch lengths allowed? No
O Outgroup root? No, use as outgroup species 1
L Lower-triangular data matrix? No
R Upper-triangular data matrix? No
S Subreplicates? No
G Global rearrangements? No
J Randomize input order of species? No. Use input order
M Analyze multiple data sets? No
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes
3 Print out tree Yes
4 Write out trees onto tree file? Yes

Y to accept these or type the letter for one to change
Fitch-Margoliash is the distance based optimization method, which means that it searches for a tree with the smallest variability. Therefore you have the option of using an user-defined tree with option "u". In this case the program will, as default, read the user-defined tree from the file "intree". This also activates a new option "n". If you choose to use the branch lengths from the user tree, fitch calculates the Sum of squares and Average percent standard deviation for the user-defined tree.

Confirm the setting by typing "y" and pressing Return. Neighbor creates two new files, "outfile" and "outtree".

Outfile contains detailed information about the analysis and its results. It also contains the inferred tree drawn with symbol graphics. Also the estimated branch lengths are reported in the file.

5 Populations

Neighbor-Joining/UPGMA method version 3.6

Neighbor-joining method

Negative branch lengths allowed

+---------------------Opossum
| +-----2
! ! +-------------------Chicken
! ! +-----1
! ! +----------------------------Frog
! 3-Rabbit
! +-------Human

remember: this is an unrooted tree!

<table>
<thead>
<tr>
<th>Between</th>
<th>And</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>3</td>
<td>Human</td>
<td>0.23064</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.12944</td>
</tr>
<tr>
<td>2</td>
<td>Opossum</td>
<td>0.73871</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.17009</td>
</tr>
<tr>
<td>1</td>
<td>Chicken</td>
<td>0.62698</td>
</tr>
<tr>
<td>1</td>
<td>Frog</td>
<td>0.95492</td>
</tr>
<tr>
<td>3</td>
<td>Rabbit</td>
<td>0.05116</td>
</tr>
</tbody>
</table>

File "outtree" contains the actual tree-drawing instructions. It also reports the branch lengths (the numerical values reported after : -marks), which are the same as in the file "outfile".

(Human:0.22996,((Frog:0.95134,Chicken:0.63056):0.16672,Opossum:0.74182):0.12891,Rabbit:0.05184);
Protein data
The distance method works more or less similarly than with DNA data. The program protdist writes out a menu with modifiable settings. After you have modified them to your liking, the program produces an "outfile", which contains pairwise distances. Those distances can be transformed into a tree as has been described in the DNA data-section.

Protein distance algorithm, version 3.61
Settings for this run:
- P Use JTT, PMB, PAM, Kimura, categories model? Jones-Taylor-Thornton
- G Gamma distribution of rates among positions? No
- C One category of substitution rates? Yes
- W Use weights for positions? No
- M Analyze multiple data sets? No
- I Input sequences interleaved? Yes
- 0 Terminal type (IBM PC, ANSI)? IBM PC
- 1 Print out the data at start of run? No
- 2 Print indications of progress of run? Yes

Are these settings correct? (type Y or the letter for one to change)

There are five options of evolutionary models to choose from: JTT (Jones, Taylor Thornton), PAM (Dayhoff), PMB, Kimura and categories. PAM model uses the PAM001 model for calculations. JTT and PAM are widely used amino acid substitution matrices (models), and PMB is a much resent model derived from conserved blocks in Blocks database. Kimura model is the plain D-distance (the uncorrected raw distance) and categories is a model put together by Felsenstein. See Phylip documentation for more information.

Computing distances:
- CAS1_HUMAN
- CAS1_RABIT
- CAS1_MOUSE
- CAS1_BOVIN
- CAS1_SHEEP
- CAS1_PIG

Output written to output file

Parsimony methods

DNA data
The programs available for DNA parsimony are dnapars and dnapenny. The differences between these DNA parsimony programs are in the algorithm. Dnapars searches for the most parsimonious tree by a heuristic algorithm, which does not guarantee that the shortest tree is found. Program dnapenny uses the branch-and-bound algorithm, which guarantees that the shortest tree is found, but takes quite a much computer time.
Program dnapars is controlled through this menu:

DNA parsimony algorithm, version 3.61

Setting for this run:

- **U** Search for best tree? Yes
- **S** Search option? More thorough search
- **V** Number of trees to save? 10000
- **J** Randomize input order of sequences? No. Use input order
- **O** Outgroup root? No, use as outgroup species 1
- **T** Use Threshold parsimony? No, use ordinary parsimony
- **N** Use Transversion parsimony? No, count all steps
- **W** Sites weighted? No
- **M** Analyze multiple data sets? No
- **I** Input sequences interleaved? Yes
- **0** Terminal type (IBM PC, ANSI, none)? IBM PC
- **1** Print out the data at start of run No
- **2** Print indications of progress of run Yes
- **3** Print out tree Yes
- **4** Print out steps in each site No
- **5** Print sequences at all nodes of tree No
- **6** Write out trees onto tree file? Yes

Y to accept these or type the letter for one to change

Invoking the option "s" will allow you to specify some options of more or less thorough search. The more thorough search will save multiple equally parsimonious trees without collapsing the branches that do not have support (no evidence of any change happened in that branch), and does rearrangements on all parts of those trees. Less thorough search collapses non-supported branches before rearrangements. This leads to fewer rearrangements and faster analysis. You can even decide to do rearrangements for one tree only. This means that randomly only one of multiple equally parsimonious trees is rearranged, but the search is much more restricted, which not necessarily a good situation. (Felsenstein, PHYLIP documentation)

Often parsimony analysis produces many equally parsimonious trees, which can then be analyzed more closely with, e.g., maximum likelihood or some other methods. You can specify the number of trees to save with option "v".

Sometimes it is a good practise to limit the number of changes one site can contribute to the tree. This can be accomplished with option "t". With "t" you can specify a threshold over which all the changes are regarded as a threshold number of changes.

Transversion parsimony (option "n") uses only transversions for the parsimony analysis. This tries to remove the bias resulting from the more rapid accumulation of transition substitutions to the DNA.

The option "5" can be used to infer ancient states of sites. If you choose to print sequences at all nodes of the tree, the "outfile" will contain more information than normally:
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Any Steps?</th>
<th>State at upper node</th>
<th>Any Steps?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>yes</td>
<td>GTYCAGGGCT -GGGCATAAA AGGCAGAGCA GGGCCAGCTR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>yes</td>
<td>...NR....... .?......... .?......... A.RT.......</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>yes</td>
<td>..C..CB.... ..CA.VDGHD T.V...CV..A.</td>
<td></td>
</tr>
<tr>
<td>3 Frog</td>
<td>yes</td>
<td>Frog</td>
<td>C..AA.TTTG GC..TGG.TT ..A....A.. T.A..GT..G</td>
<td>Frog</td>
</tr>
<tr>
<td>3 Chicken</td>
<td>yes</td>
<td>Chicken</td>
<td>A.GG.C.. ..-..CA.CG ..CT.T.C.C .CGGG..A</td>
<td>Chicken</td>
</tr>
<tr>
<td>2 Opossum</td>
<td>yes</td>
<td>Opossum</td>
<td>..TTG...GC CA..G.....T ..A.T..T</td>
<td>Opossum</td>
</tr>
<tr>
<td>1 Human</td>
<td>yes</td>
<td>Human</td>
<td>AGC......... ..T...G.. .A....T..A</td>
<td>Human</td>
</tr>
<tr>
<td>1 Rabbit</td>
<td>yes</td>
<td>Rabbit</td>
<td>..T....A.. T.........-....G</td>
<td>Rabbit</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>yes</td>
<td>CTGCTTACAH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>yes</td>
<td>.W.....A.M</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>yes</td>
<td>.....C....</td>
<td></td>
</tr>
<tr>
<td>3 Frog</td>
<td>yes</td>
<td>Frog</td>
<td>.T.A....CA</td>
<td>Frog</td>
</tr>
<tr>
<td>3 Chicken</td>
<td>yes</td>
<td>Chicken</td>
<td>GA..C..G.C</td>
<td>Chicken</td>
</tr>
<tr>
<td>2 Opossum</td>
<td>yes</td>
<td>Opossum</td>
<td>.A..A.C.TA</td>
<td>Opossum</td>
</tr>
<tr>
<td>1 Human</td>
<td>yes</td>
<td>Human</td>
<td>T.........T</td>
<td>Human</td>
</tr>
<tr>
<td>1 Rabbit</td>
<td>maybe</td>
<td>Rabbit</td>
<td>T........C</td>
<td>Rabbit</td>
</tr>
</tbody>
</table>

Program dnapenny has a different kind of menu:

Penny algorithm for DNA, version 3.61
branch-and-bound to find all most parsimonious trees

Settings for this run:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>How many groups of 100 trees:</td>
<td>1000</td>
</tr>
<tr>
<td>F</td>
<td>How often to report, in trees:</td>
<td>100</td>
</tr>
<tr>
<td>S</td>
<td>Branch and bound is simple?</td>
<td>Yes</td>
</tr>
<tr>
<td>O</td>
<td>Outgroup root?</td>
<td>No, use as outgroup species 1</td>
</tr>
<tr>
<td>T</td>
<td>Use Threshold parsimony?</td>
<td>No, use ordinary parsimony</td>
</tr>
<tr>
<td>W</td>
<td>Sites weighted?</td>
<td>No</td>
</tr>
<tr>
<td>M</td>
<td>Analyze multiple data sets?</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>Input sequences interleaved?</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>Terminal type (IBM PC, ANSI, none)?</td>
<td>IBM PC</td>
</tr>
<tr>
<td>1 Print out the data at start of run</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2 Print indications of progress of run</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3 Print out tree</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4 Print out steps in each site</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>5 Print sequences at all nodes of tree</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>6 Write out trees onto tree file?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Are these settings correct? (type Y or the letter for one to change)

You can specify ("h") how many hundreds of trees you want to search, and how often the report is printed on the screen ("f").

You can also set the branch-and-bound algorithm to reconsider the order of the species with option "s". This will cause the analysis to take a longer time, but according to Felsenstein “it might prove of use on some data sets [of intermediate messiness]”.

Program dnapars gives only a little information during the run:
Adding species:
1. Rabbit
2. Human
3. Opossum
4. Chicken
5. Frog

Doing global rearrangements on all trees tied for best

Output written to output file
Trees also written onto tree file

Done.

Dnapenny gives information about the search in real time, so you can estimate how long the run is going to take:

<table>
<thead>
<tr>
<th>How many trees looked at so far (multiples of 100):</th>
<th>Length of longest tree found so far</th>
<th>How many trees this long found so far</th>
<th>Approximate percentage searched so far</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89</td>
<td>1</td>
<td>50 %</td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td>1</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Output written to output file
Trees also written onto tree file

Both programs produce "outfile" and "outtree", but they look a bit different. Dnapars infers the branching order of the tree and estimates the branch lengths, but dnapenny only infers the branching order. The length of the tree is on a line "requires a total of xxxx.xx". The shorter value mean a more parsimonious tree.

Thus, the "outfile" and "outtree" of Dnapars:

DNA parsimony algorithm, version 3.6

One most parsimonious tree found:

```
+-----------------Frog
  +----------3
  +--------2
     +----------Chicken
     |          
     |          +-----------------Opossum
     |          
1--------Human
     
+----------Rabbit
```

requires a total of 3019.000
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.181782</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.150139</td>
</tr>
<tr>
<td>3</td>
<td>Frog</td>
<td>0.347616</td>
</tr>
<tr>
<td>3</td>
<td>Chicken</td>
<td>0.304468</td>
</tr>
<tr>
<td>2</td>
<td>Opossum</td>
<td>0.291273</td>
</tr>
<tr>
<td>1</td>
<td>Human</td>
<td>0.182778</td>
</tr>
<tr>
<td>1</td>
<td>Rabbit</td>
<td>0.219167</td>
</tr>
</tbody>
</table>

```
((Frog:0.34762,Chicken:0.30447):0.15014,Opossum:0.29127):0.18178,Human:0.18278,Rabbit:0.21917);
```
Protein data

Protein parsimony program protpars is comparable to dnapars, and its menu looks very similar:

Protein parsimony algorithm, version 3.61

Setting for this run:

U Search for best tree? Yes
J Randomize input order of sequences? No. Use input order
O Outgroup root? No, use as outgroup species 1
T Use Threshold parsimony? No, use ordinary parsimony
C Use which genetic code? Universal
W Sites weighted? No
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes
3 Print out tree Yes
4 Print out steps in each site No
5 Print sequences at all nodes of tree No
6 Write out trees onto tree file? Yes

Are these settings correct? (type Y or the letter for one to change)

You can specify the genetic code used for the analysis by option "c". You have an option to choose from universal and four mitochondrial codes.

However, its "outfile" and "outtree" are similar to the output of dnapenny:

Protein parsimony algorithm, version 3.6

One most parsimonious tree found:

 +-----CAS1_PIG
 | +--5
 | ! ! +--CAS1_SHEEP
 | ! ! +--3 +--4
 | ! ! ++--CAS1_BOVIN
 | ! ! +--CAS1_MOUSE
 | ! ! 1 !
 | ! +--CAS1_RABIT
 | !
 +------------CAS1_HUMAN

remember: this is an unrooted tree!

requires a total of 1061.000

((CAS1_PIG,(CAS1_SHEEP,CAS1_BOVIN)),CAS1_MOUSE),CAS1_RABIT),
CAS1_HUMAN);
Maximum likelihood methods
There are two maximum likelihood programs for DNA data, and one for protein data. Dnaml uses a maximum likelihood method without molecular clock, and DNAmlk assumes a molecular clock. Protoml does not assume molecular clock.

DNA data
The menu of the dnaml:

Nucleic acid sequence Maximum Likelihood method, version 3.61

Settings for this run:
- U Search for best tree? Yes
- T Transition/transversion ratio: 2.0000
- F Use empirical base frequencies? Yes
- C One category of sites? Yes
- R Rate variation among sites? constant rate
- W Sites weighted? No
- S Speedier but rougher analysis? Yes
- G Global rearrangements? No
- J Randomize input order of sequences? No. Use input order
- O Outgroup root? No, use as outgroup species 1
- M Analyze multiple data sets? No
- I Input sequences interleaved? Yes
- 0 Terminal type (IBM PC, ANSI, none)? IBM PC
- 1 Print out the data at start of run No
- 2 Print indications of progress of run Yes
- 3 Print out tree Yes
- 4 Write out trees onto tree file? Yes
- 5 Reconstruct hypothetical sequences? No

Y to accept these or type the letter for one to change

Most of the options has already been covered in the chapters above. However, there two new option, "s" and "g" with which you can modify the search parameters a bit.

The option "s" turns on or off the search method which iterates or does not iterate the branch lengths in all topologies. Turning this option off ("No, not rough") will cause the program to run more slowly, but it will also be a bit more likely to find the tree topology of highest likelihood. (Felsenstein, PHYLIP documentation)

The "g" (global search) option causes, after the last species is added to the tree, each possible group to be removed and re-added. This improves the result, since the position of every species is reconsidered. It approximately triples the run-time of the program. This equivalent to the rearrangements sone in parsimony program dnapars. Specifically, the program uses SPR (sub-tree pruning and regrafting) method for rearranging (or as others say, swapping) the trees. (Felsenstein, PHYLIP documentation)

If more than one category is specified, then another option, "a", becomes visible in the menu. This allows us to specify that we want to assume that sites that have the same regional rate category are expected to be clustered so that there is autocorrelation of rates. The program asks for the value of the average patch length. This is an expected length of patches that have the same rate. If
it is 1, the rates of successive sites will be independent. If it is, say, 10.25, then the chance of change to a new rate will be $1 / 10.25$ after every site. However the "new rate" is randomly drawn from the mix of rates, and hence could even be the same. So the actual observed length of patches with the same rate will be a bit larger than 10.25. Note below that if you choose multiple patches, there will be an estimate in the output file as to which combination of rate categories contributed most to the likelihood. (Felsenstein, PHYLIP documentation)

The menu of the dnamlk:

Nucleic acid sequence
Maximum Likelihood method with molecular clock, version 3.61

Settings for this run:
U Search for best tree? Yes
T Transition/transversion ratio: 2.0
F Use empirical base frequencies? Yes
C One category of substitution rates? Yes
R Rate variation among sites? constant rate
G Global rearrangements? No
W Sites weighted? No
J Randomize input order of sequences? No. Use input order
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes
3 Print out tree Yes
4 Write out trees onto tree file? Yes
5 Reconstruct hypothetical sequences? No

Are these settings correct? (type Y or the letter for one to change)

The "outfile" of the dnaml is quite similar to the outfile of dnamlk. The first is the "outfile" from dnaml analysis, and the latter is the same file from dnamlk.

Nucleic acid sequence Maximum Likelihood method, version 3.6
Empirical Base Frequencies:
A 0.25650
C 0.21951
G 0.22091
T(U) 0.30309

Transition/transversion ratio = 2.000000

```
+----- Human
    |  +-------------------------- Frog
    |  +----- 3
    |  1----- 2
    |  +---------- Chicken
    |  +----------- Opossum
    +-- Rabbit
```

remember: this is an unrooted tree!
Ln Likelihood = -9695.14457

<table>
<thead>
<tr>
<th>Between</th>
<th>And</th>
<th>Length</th>
<th>Approx. Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rabbit</td>
<td>0.09743</td>
<td>(0.06975, 0.12511) **</td>
</tr>
<tr>
<td>1</td>
<td>Human</td>
<td>0.20090</td>
<td>(0.16716, 0.23474) **</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.18632</td>
<td>(0.12823, 0.24451) **</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.19152</td>
<td>(0.11910, 0.26384) **</td>
</tr>
<tr>
<td>3</td>
<td>Frog</td>
<td>0.90555</td>
<td>(0.78325, 1.02776) **</td>
</tr>
<tr>
<td>3</td>
<td>Chicken</td>
<td>0.58309</td>
<td>(0.49455, 0.67166) **</td>
</tr>
<tr>
<td>2</td>
<td>Opossum</td>
<td>0.69201</td>
<td>(0.60518, 0.77894) **</td>
</tr>
</tbody>
</table>

* = significantly positive, P < 0.05
** = significantly positive, P < 0.01

Nucleic acid sequence
Maximum Likelihood method with molecular clock, version 3.6

Empirical Base Frequencies:

A 0.25650
C 0.21951
G 0.22091
T(U) 0.30309

Transition/transversion ratio = 2.000000

+---------------------------------------Frog
--4
! +--------------------------------Chicken
+------3
! +------------------------Opossum
+------2
! +-------Human
+----------1
+-------Rabbit

Ln Likelihood = -9714.14764

<table>
<thead>
<tr>
<th>Ancestor</th>
<th>Node</th>
<th>Node Height</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Frog</td>
<td>0.77626</td>
<td>0.77626</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.13842</td>
<td>0.13842</td>
</tr>
<tr>
<td>3</td>
<td>Chicken</td>
<td>0.77626</td>
<td>0.63785</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.27815</td>
<td>0.13973</td>
</tr>
<tr>
<td>2</td>
<td>Opossum</td>
<td>0.77626</td>
<td>0.49812</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.62602</td>
<td>0.34787</td>
</tr>
<tr>
<td>1</td>
<td>Human</td>
<td>0.77626</td>
<td>0.15025</td>
</tr>
<tr>
<td>1</td>
<td>Rabbit</td>
<td>0.77626</td>
<td>0.15025</td>
</tr>
</tbody>
</table>
As you can see, dnaml produces the confidence intervals of the branch lengths of the tree, but dnamlk doesn't. Dnaml also produces a rough estimate of the p-value that the length of the branch is significantly greater than zero. This test is done by comparing the tree with the inferred branch length to a tree where the same branch has been scaled to be zero. This result is only an approximation, so do not rely on it when interpreting the results.

The reported likelihood (Ln Likelihood) is actually a natural logarithm of the likelihood. The closer the likelihood value is to zero, the better. It can be used for statistical testing of the hypothesis, as will be discussed in the advanced analysis chapter.

The "outtree" from both programs is identical in its form:

(Human:0.20090,((Frog:0.90555,Chicken:0.58309):0.19152, Opossum:0.69201):0.18632,Rabbit:0.09743);

Protein data
The startup menu of the program proml is similar to dnaml:

Amino acid sequence Maximum Likelihood method, version 3.61

Settings for this run:

U Search for best tree? Yes
P JTT, PMB or PAM probability model? Jones-Taylor-Thornton
C One category of sites? Yes
R Rate variation among sites? constant rate of change
W Sites weighted? No
S Speedier but rougher analysis? Yes
G Global rearrangements? No
J Randomize input order of sequences? No. Use input order
O Outgroup root? No, use as outgroup species 1
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes
3 Print out tree Yes
4 Write out trees onto tree file? Yes
5 Reconstruct hypothetical sequences? No

Y to accept these or type the letter for one to change

The program proml assumes no molecular clock, and produces output files which are identical to the output files of the dnaml.

Resampling procedure

Idea behind resampling (bootstrapping and other methods) is to assess how reliable a tree we can produce with the dataset at hand. Resampling proceeds (see the flow chart in the end of this book, also) by first creating a number (100-10000) random dataset from the original dataset. These
random datasets are analyzed exactly the same way the original dataset was analyzed, and the results from the random datasets are summarized using a majority rule consensus tree (program consense). Resampling with replacement (bootstrapping) can be done with the program seqboot:

Bootstrapping algorithm, version 3.61

Settings for this run:
D Sequence, Morph, Rest., Gene Freqs? Molecular sequences
J Bootstrap, Jackknife, Permute, Rewrite? Bootstrap
% Regular or altered sampling fraction? regular
B Block size for block-bootstrapping? 1 (regular bootstrap)
R How many replicates? 100
W Read weights of characters? No
C Read categories of sites? No
S Write out data sets or just weights? Data sets
I Input sequences interleaved? Yes
O Terminal type (IBM PC, ANSI, none)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes

Y to accept these or type the letter for one to change

You have several options to choose from. First, there are three resampling procedures available in the seqboot program (option "j"). Bootstrapping creates (with block size=1, option "b") new data sets, which are of equal length compared to the original sequence alignment. In bootstrapping resamples, every sequence site can occur in the same random alignment many times. Jackknife deletes a random 50% of sites from the original alignment, and none of the sites can occur in the resamples more than once. Permutation produces data matrices that have the same number and kinds of characters but no taxonomic structure. It is used for different purposes than the bootstrap, as it tests not the variation around an estimated tree but the hypothesis that there is no taxonomic structure in the data: if a statistic such as number of steps is significantly smaller in the actual data than it is in replicates that are permuted, then we can argue that there is some taxonomic structure in the data (though perhaps it might be just a pair of sibling species). The program also converts Phylip-formatted data into other formats (Nexus and XML) using the “rewrite” selection (option J).

With option "r" sets the number of new random data matrixes produced.

You can also use weights with the bootstrapping procedure (option "w"). If you want to save the harddisk space, you can generate, instead of new dataset, a file containing weights. These weights can then be used in the same way as the new bootstrapped dataset. Only, instead of using multiple dataset in the analysis program, you need to use the weights.

After accepting the settings, seqboot asks for a random number. Pick an odd random number. Just keep in mind that using the same random number produces the same result everytime. If you need to run bootstrapping several times, change the random number between the runs.

Accepting the settings produces a file where there are 100 random samples:
Then we proceed with this file as if it was the original sequence alignment. In our case, let's produce distance trees with the program protdist.

Protein distance algorithm, version 3.61

Settings for this run:
P Use JTT, PMB, PAM, Kimura, categories model? Jones-Taylor-Thornton
G Gamma distribution of rates among positions? No
C One category of substitution rates? Yes
W Use weights for positions? No
M Analyze multiple data sets? No
I Input sequences interleaved? Yes
0 Terminal type (IBM PC, ANSI)? IBM PC
1 Print out the data at start of run No
2 Print indications of progress of run Yes

Are these settings correct? (type Y or the letter for one to change) m

How many data sets?
100

We have to tell the program that there are multiple data sets in the same file by changing the option “m”. Then the distance matrix is calculated for all the 100 random samples. The outfile produced contains all these distance matrixes:

<table>
<thead>
<tr>
<th></th>
<th>CAS1_MOUSE</th>
<th>CAS1_RABIT</th>
<th>CAS1_PIG</th>
<th>CAS1_HUMAN</th>
<th>CAS1_SHEEP</th>
<th>CAS1_BOVIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.00000</td>
<td>0.80622</td>
<td>1.46041</td>
<td>1.14997</td>
<td>2.11928</td>
<td>1.98883</td>
</tr>
<tr>
<td>6</td>
<td>0.80622</td>
<td>0.00000</td>
<td>1.35772</td>
<td>0.82152</td>
<td>1.76401</td>
<td>1.49899</td>
</tr>
<tr>
<td>6</td>
<td>1.46041</td>
<td>1.35772</td>
<td>0.00000</td>
<td>1.30075</td>
<td>0.61110</td>
<td>0.58505</td>
</tr>
<tr>
<td>6</td>
<td>1.14997</td>
<td>0.82152</td>
<td>1.30075</td>
<td>0.00000</td>
<td>1.72499</td>
<td>1.56997</td>
</tr>
<tr>
<td>6</td>
<td>2.11928</td>
<td>1.76401</td>
<td>0.61110</td>
<td>1.72499</td>
<td>0.00000</td>
<td>0.08268</td>
</tr>
<tr>
<td>6</td>
<td>1.98883</td>
<td>1.49899</td>
<td>0.58505</td>
<td>1.56997</td>
<td>0.08268</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

[And so forth]
This distance matrix is then used for tree drawing with the original method, \textit{i.e.}, if the original data was analysed with F84-distance and neighbor-joining, the bootstrapping analysis has to be performed with the same settings.

Again, in the program \textit{neighbor} the multiple datasets option (m) has to be chosen. The resulting \textit{outtree} contains trees for all the 100 random datasets.

\begin{verbatim}
((CAS1_PIG:0.09668,(CAS1_SHEEP:0.11341,CAS1_BOVIN:-0.03073):0.46006):0.75811,
CAS1_HUMAN:0.41697,(CAS1_MOUSE:0.55088,CAS1_RABIT:0.25534):0.16567);

([CAS1_SHEEP:0.14929,CAS1_BOVIN:0.01356):0.52397,CAS1_PIG:0.14082):0.82720,
CAS1_MOUSE:0.54493,(CAS1_HUMAN:0.38539,CAS1_RABIT:0.30958):0.06851));
\end{verbatim}

[And so forth]

These dataset are then combined in a consensus tree with the program \textit{consense}.

Consensus tree program, version 3.61

Settings for this run:

\begin{verbatim}
C Consensus type (MRe, strict, MR, Ml): Majority rule (extended)
O Outgroup root: No, use as outgroup species 1
R Trees to be treated as Rooted: No
T Terminal type (IBM PC, ANSI, none): IBM PC
1 Print out the sets of species: Yes
2 Print indications of progress of run: Yes
3 Print out tree: Yes
4 Write out trees onto tree file: Yes
\end{verbatim}

Are these settings correct? (type Y or the letter for one to change)

There are four consensus tree types to choose from. Strict consensus creates a tree which only includes the set of sequences, if it occurs in all the trees. The MR, MRe and M1 all produce a majority rule trees with slightly different options. The default method (MRe) will include into the new tree all the groups of sequences, which are present in more than 50\% of the trees. M1 lets you to specify the percentage. Note, that the consensus tree from bootstrapping samples should always be drawn with majority rule method. (Felsenstein, PHYLIP documentation)

The "outfile" and "outtree" contain the information of how many times the set of species was find to be together in the random samples. If this value is under, say 70-95\%, the result should be interpreted with causion. This also implies that there probably is not enough data to differentiate between the species, which have a low bootstrapping value.

Majority-rule and strict consensus tree program, version 3.61
Species in order:

\begin{verbatim}
CAS1 PIG
CAS1 SHEEP
CAS1 BOVIN
CAS1 HUMAN
CAS1 MOUSE
CAS1 RABIT
\end{verbatim}
Sets included in the consensus tree
Set (species in order) How many times out of 100.00

...*** 100.00
**... 100.00
....** 77.00

Sets NOT included in consensus tree:
Set (species in order) How many times out of 100.00

...*.* 16.00
....* 7.00

Extended majority rule consensus tree

CONSENSUS TREE:
the numbers at the forks indicate the number of times the group consisting of the species which are to the right of that fork occurred among the trees, out of 100.00 trees

+---------------------------CAS1 PIG
| |
| +---------------------------CAS1 BOVIN
| | |
| | +---------------------------CAS1 SHEEP
| | | |
| | | +---------------------------CAS1 MOUSE
| | | | |
| | | | +---------------------------CAS1 RABIT
| | | | | |
| | | | | +---------------------------CAS1 HUMAN
| | | | | | |
+----------------------------------

remember: this is an unrooted tree!
The concommittant “outtree” contains the same information. The bootstrapping values are reported in the place of branch lengths.

(((CAS1_HUMAN:100.0,(CAS1_RABIT:100.0,CAS1_MOUSE:100.0):77.0):100.0,(CAS1_SHEEP:100.0,CAS1_BOVIN:100.0):100.0):100.0,CAS1_PIG:100.0);

The bootstrapping procedure implemented in Phylip does not perform the analysis on the original tree. Instead, Felsenstein has argued that the most reasonable tree would be the one recovered from the random samples as described above. However, the original inferred tree and the tree produced by bootstrapping are usually pretty similar.
Drawing the tree

We can draw an unrooted tree from the information contained in the file "outtree" with the program drawgram.

Drawgram: can't find input tree file "intree"
Please enter a new file name> plottree
DRAWGRAM from PHYLIP version 3.6
Reading tree ...
Tree has been read.
Loading the font
Drawgram: can't find font file "fontfile"
Please enter a new file name> font1
Font loaded.

Rooted tree plotting program version 3.61

Here are the settings:
0 Screen type (IBM PC, ANSI): IBM PC
P Final plotting device: Postscript printer
V Previewing device: MS Windows display
H Tree grows: Horizontally
S Tree style: Phenogram
B Use branch lengths: Yes
L Angle of labels: 90.0
R Scale of branch length: Automatically rescaled
D Depth/Breadth of tree: 0.53
T Stem-length/tree-depth: 0.05
C Character ht / tip space: 0.3333
A Ancestral nodes: Weighted
F Font: Times-Roman
M Horizontal margins: 1.65 cm
M Vertical margins: 2.16 cm
Pages per tree: one page per tree

Y to accept these or type the letter for one to change

First, we want to be able to view the file easily in Windows, and we change the Final plotting device by typing "p" and Return.
A new menu opens:

Which plotter or printer will the tree be drawn on?
(many other brands or models are compatible with these)

Type: to choose one compatible with:

L Postscript printer file format
M PICT format (for drawing programs)
J HP Laserjet PCL file format
W MS-Windows Bitmap
F FIG 2.0 drawing program format
A Idrad drawing program format
Z VRML Virtual Reality Markup Language file
P PCX file format (for drawing programs)
K Tektronix 4010 graphics terminal
X X Bitmap format
V POVRAY 3D rendering program file
R Rayshade 3D rendering program file
H Hewlett-Packard pen plotter (HPGL file format)
D DEC ReGIS graphics (VT240 terminal)
E Epson MX-80 dot-matrix printer
C Prowriter/Imagewriter dot-matrix printer
T Toshiba 24-pin dot-matrix printer
O Okidata dot-matrix printer
B Houston Instruments plotter
U other: one you have inserted code for

Choose one:

From which we will choose MS-Windows Bitmap by typing "w" and Return. The program then
asks the desired resolution of the picture (on the next page). After specifying that, you'll be
dropped back to the main menu.

Please select the MS-Windows bitmap file resolution
X resolution?
640
Y resolution?
400

After accepting the settings by typing in "y" and Return, a new window opens. In this window
you can preview the tree, and if it looks good, plot it into file by selecting from File-menu option
plot. The tree is plotted in the "plotfile". The options of the program drawtree are similar, but the
program produces a rooted tree.
Advanced topics

Here some more advanced analysis options are considered. These options are seldom used by researchers, because they do not know about these possibilities.

User trees
User trees have multiple purposes. They can be used for transition/transversion ratio approximation, likelihood comparisons (statistical comparisons of the trees), etc. These purposes will be covered in the succeeding sections.

User trees should be in a plain text file named "intree". This file consists of the line giving the number of trees, succeeded by the trees. Some program do not read the branch lengths or the number of the trees, so this needs a little experimentation. However, the basic form of the "intree" file is:

1
(Frog,(Chicken,(Opossum,(Human,Rabbit))));

The easiest way to produce user-trees is to perform an analysis with some of the programs, and then modify the file outtree with the program retree or by some text editor.

Program retree
Retree reads in a treefile, which is in Newick format. For example, a tree produced with dnaml can be directly imported into retree. In this example we modify the tree:

((Frog:0.34762,Chicken:0.30447):0.15014,Opossum:0.29127);

when the program starts, you get a menu:

Tree Rearrangement, version 3.61

Settings for this run:
U Initial tree (arbitrary, user, specify)? User tree from tree file
N Format to write out trees (PHYLIP, Nexus, XML)? PHYLIP
0 Graphics type (IBM PC, ANSI)? (none)
W Width of terminal screen, of plotting area? 80, 80
L Number of lines on screen? 24

Are these settings correct? (type Y or the letter for one to change)

After you have confirmed these setting, a new view opens:

,-----------------------------1:Frog
 '-----------------------------8
 ,--------7
 ! !
 ! `-----------------------------2:Chicken
 ! !
 ! `-----------------------------3:Opossum
 !
`--6------4:Human
 !
 `-----------------------------5:Rabbit
The options of the program can be printed on the screen by typing "?" and Return:

. Redisplay the same tree again
= Redisplay the same tree without/with lengths
U Undo the most recent change in the tree
W Write tree to a file
+ Read next tree from file (may blow up if none is there)
R Rearrange a tree by moving a node or group
O select an Outgroup for the tree
M Midpoint root the tree
T Transpose immediate branches at a node
F Flip (rotate) subtree at a node
D Delete or restore nodes
B Change or specify the length of a branch
N Change or specify the name(s) of tip(s)
H Move viewing window to the left
J Move viewing window downward
K Move viewing window upward
L Move viewing window to the right
C show only one Clade (subtree) (might be useful if tree is too big)
? Help (this screen)
Q (Quit) Exit from program
X Exit from program

TO CONTINUE, PRESS ON THE Return OR Enter KEY

Now you can reroot the tree, swap the branches, etc. In this case, we want to remove branch lengths from all the branches of the tree. This can be done by invoking the option "b":

NEXT? (Options: R . U W O M T F D B N H J K L C + ? X Q) (?) for Help) b
Specify length of which branch (0 = all branches)? 0

(this operation cannot be undone)

enter U to leave the lengths unchanged
OR enter R to remove the lengths from all branches:
r

|--6>-------------------------------->4:Chicken

Next we want to save the tree and quit the program:

NEXT? (Options: R . U W O M T F D B N H J K L C + ? X Q) (?) for Help) x
Do you want to write out the tree to a file? (Y or N) y
retree: the file "outtree" that you wanted to use as output tree file already exists.
Do you want to Replace it, Append to it, write to a new File, or Quit?
(please type R, A, F, or Q)

r

Enter R if the tree is to be rooted
OR enter U if the tree is to be unrooted: u

Tree written to file

(((Frog,Chicken),Opossum),Human,Rabbit);

We still need to add the line containing the number of the trees into the produces file:

1

(((Frog,Chicken),Opossum),Human,Rabbit);

Estimating transition/transversion ratio

Estimating the transition/transversion ratio is pretty easy with the program dnapars. A parsimony tree with transversion parsimony turned off (default) is first calculated. From the outfile, note the number of changes required for the tree (in this case, 3019).

From the outtree, construct a treefile ("intree") which contains the inferred tree without branch lengths (for help, see above). Remember to add a line specifying the number of trees in the file.

Run the dnapars with exactly the same settings as previously, except give it an intree, which we just produced, and use the transversion parsimony. Note the number of changes from the outfile (in this case, 2091).

From these values, the transition/transversion ratio can be estimated: 3019 / 2091=1.44. You can then use this value in more detailed analyses, e.g. maximum likelihood, etc. However, the estimated ratio seems to depend on the specified outgroup. So, if you have information about the outgroup you are planning to use in the forthcoming analysis, you should use it in this estimation process too.

Another way to estimate the transition/transversion ratio is to run maximum likelihood program dnaml multiple times, and try to find the value, which minimizes the likelihood value. If you use this procedure, you can usually get quite similar results as with the aforementioned parsimony method.
The maximum likelihood method works this way (* = initial value from parsimony analysis):

```
<table>
<thead>
<tr>
<th>s/t-ratio</th>
<th>likelihood</th>
<th>s/t-ratio</th>
<th>likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.44</td>
<td>-9652.96081*</td>
<td>1.00</td>
<td>-9643.20009</td>
</tr>
<tr>
<td>1.25</td>
<td>-9644.49078</td>
<td>0.95</td>
<td>-9644.9407</td>
</tr>
<tr>
<td>1.15</td>
<td>-9642.29536</td>
<td>0.90</td>
<td>-9647.57138</td>
</tr>
<tr>
<td>1.10</td>
<td>-9641.96561</td>
<td>0.85</td>
<td>-9651.21944</td>
</tr>
<tr>
<td>1.05</td>
<td>-9642.23988</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

If the tree is then inferred with the s/t-ratio inferred by parsimony and maximum likelihood, the tree looks identical in our case, but the branch lengths vary a bit:

```
+-----Human
     +-----------------------Frog
     |          +----3
1-----2    +---------------Chicken
     |     +------------------Opossum
     +--Rabbit
[parsimony estimation]
remember: this is an unrooted tree!

Ln Likelihood = -9652.96081

<table>
<thead>
<tr>
<th>Between</th>
<th>And</th>
<th>Length</th>
<th>Approx. Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rabbit</td>
<td>0.09923</td>
<td>( 0.07218, 0.12617) **</td>
</tr>
<tr>
<td>1</td>
<td>Human</td>
<td>0.19303</td>
<td>( 0.16064, 0.22542) **</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.18455</td>
<td>( 0.13216, 0.23698) **</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.15719</td>
<td>( 0.09442, 0.21997) **</td>
</tr>
<tr>
<td>3</td>
<td>Frog</td>
<td>0.80197</td>
<td>( 0.70133, 0.90253) **</td>
</tr>
<tr>
<td>3</td>
<td>Chicken</td>
<td>0.53674</td>
<td>( 0.46077, 0.61276) **</td>
</tr>
<tr>
<td>2</td>
<td>Opossum</td>
<td>0.61599</td>
<td>( 0.54185, 0.69013) **</td>
</tr>
</tbody>
</table>

* = significantly positive, P < 0.05
** = significantly positive, P < 0.01

[maximum likelihood estimation]
Ln Likelihood = -9641.96561

<table>
<thead>
<tr>
<th>Between</th>
<th>And</th>
<th>Length</th>
<th>Approx. Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rabbit</td>
<td>0.10097</td>
<td>( 0.07432, 0.12755) **</td>
</tr>
<tr>
<td>1</td>
<td>Human</td>
<td>0.18761</td>
<td>( 0.15605, 0.21917) **</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.18557</td>
<td>( 0.13596, 0.23522) **</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.13641</td>
<td>( 0.07800, 0.19475) **</td>
</tr>
<tr>
<td>3</td>
<td>Frog</td>
<td>0.75496</td>
<td>( 0.66344, 0.84638) **</td>
</tr>
<tr>
<td>3</td>
<td>Chicken</td>
<td>0.51613</td>
<td>( 0.44578, 0.58657) **</td>
</tr>
<tr>
<td>2</td>
<td>Opossum</td>
<td>0.57699</td>
<td>( 0.50869, 0.64529) **</td>
</tr>
</tbody>
</table>

* = significantly positive, P < 0.05
** = significantly positive, P < 0.01
**Estimating base frequencies**

Above, a maximum likelihood method for estimating transition/transversion ratio is presented. A similar method can be used for inferring the maximum likelihood estimators of base frequencies.

Empirical frequencies are:

<table>
<thead>
<tr>
<th>Base</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.25650</td>
</tr>
<tr>
<td>C</td>
<td>0.21951</td>
</tr>
<tr>
<td>G</td>
<td>0.22091</td>
</tr>
<tr>
<td>T(U)</td>
<td>0.30309</td>
</tr>
</tbody>
</table>

We can start the estimation by option "f", which then prompts for base frequencies. The frequency values should be separated by blanks:

```
Base frequencies for A, C, G, T/U (use blanks to separate)?
0.25 0.22 0.22 0.31
```

Note the likelihood of the old (-9695.14457) and new (-9696.03008) analysis. In this example, the likelihood got lower after modifying the base frequencies. This indicates that the empirical frequencies were better. This procedure can be repeated a number of times in order to get the best estimate.

**Testing molecular clock**

The molecular clock assumption can be crudely tested by the two maximum likelihood programs, dnaml and dnamlk. The test, which compares two likelihoods is called likelihood ratio test.

First the analysis is run by program dnamlk, which produces an unrooted tree with molecular clock assumption:

```
(Frog:0.77626, (Chicken:0.63785, (Opossum:0.49812, (Human:0.15025, Rabbit:0.15025):0.34787):0.13973):0.13842);
```

Note the probability of the tree: -9714.14764.

The program dnaml can readily read in this treefile, which has first to be named "intree". Remember to run the analysis with the user tree option ("u") turned on. You should also run the analysis without using the lenghts on the user tree.

Note the probabilty of tree from the dnaml analysis: -9695.14457

Now calculate the difference between probabilities: $2 \times (-9714.14764 + 9695.14457) = 38.006$. This difference is then compared to the chi-square distribution with df (degrees of freedom) equal to the number of sequences. The table consists of dfs on the left side, and p-values on the upper side. The values in the crossing of the p-value and df is called the critical value of the distribution. P-value is the risk that we conclude by chance that sequences did not evolve according to a clock. Often the p-value is set to be 0.05.
If the difference is larger than the critical value mentioned in the table below, the sequences did not evolve according to a molecular clock.

In our case, the difference was 38.006. That is larger than the critical value with df=5 and p-value=0.05, which is 11.070. Thus, we conclude that we can reject the clock hypothesis, but by chance we might do that in 1 / 20 cases if the same analysis was repeated (p-value of 0.05).

<table>
<thead>
<tr>
<th>df</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.706</td>
<td>3.841</td>
<td>5.024</td>
<td>6.635</td>
<td>10.828</td>
</tr>
<tr>
<td>3</td>
<td>6.251</td>
<td>7.815</td>
<td>9.348</td>
<td>11.345</td>
<td>16.266</td>
</tr>
<tr>
<td>4</td>
<td>7.779</td>
<td>9.488</td>
<td>11.143</td>
<td>13.277</td>
<td>18.467</td>
</tr>
<tr>
<td>5</td>
<td>9.236</td>
<td>11.070</td>
<td>12.833</td>
<td>15.086</td>
<td>20.515</td>
</tr>
<tr>
<td>10</td>
<td>15.987</td>
<td>18.307</td>
<td>20.483</td>
<td>23.209</td>
<td>29.588</td>
</tr>
</tbody>
</table>

**Inferring ancient states of sequence sites**

Why are we interested in reconstructing ancestral character states? It can provide important information about adaptive radiations and key innovations for these radiations. One interesting approach has been to use the ancient sequences to produce an ancient protein. Then the biochemical properties of this protein could be studied and compared to the modern proteins.

The ancestral states of sequence sites can be inferred either by parsimony or by maximum likelihood. It is often thought, that the maximum likelihood method is more accurate than the parsimony method for inferring ancient sequences.

The ancestral states are inferred in both programs dnaps and dnaml by turning on the option "5", print sequences at all nodes of tree and reconstruct hypothetical sequences, respectively.

**Tree is identical for both methods**

```
+--------------------Frog
| +------------------3
| +------------------Chicken
| | +------------------Human
| | | +------------------Opossum
| | | | +Rabbit
1-----------------Opossum
```

[maximum likelihood method]
Probable sequences at interior nodes:

<table>
<thead>
<tr>
<th>node</th>
<th>Reconstructed sequence (caps if &gt; 0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GTTCAGGACT TGGGCATAAA AGGCAGAGCA GGGccAGCTG CTGCTTACAC</td>
</tr>
<tr>
<td>2</td>
<td>agcCAGGgCT tGGGCATAAA AGtCAGgGCA GaGCcAtCTa tTGCTTACAt</td>
</tr>
<tr>
<td>3</td>
<td>rccrrcyrc rscacrgrgr ggcyacrccr rrgyakcr rgygyccary</td>
</tr>
<tr>
<td>Frog</td>
<td>CTCACAcTcTTt GGGgATGGGc TTGACCgACA TGATGGTAG GCTGgCACA</td>
</tr>
<tr>
<td>Chicken</td>
<td>GACGgcCgGCT rrCACCAGCg TGCTgATCCA ACGGCCcAGCA GAGCccAGAC</td>
</tr>
<tr>
<td>Human</td>
<td>AGCCAGGcGCT rGGGcATAAA AGTCAGGGGA GAGCCcATCC AGCCCATC</td>
</tr>
<tr>
<td>Opossum</td>
<td>GTTTGGGGGC CAGGGATAAA AGGCAGAGGCT AGATTAGTTT cAGCAGCTA</td>
</tr>
<tr>
<td>Rabbit</td>
<td>GTTCAGGACT TGGGCATAAA AGGCAGAGCA GGGc-AGCTG CTGCTTACAC</td>
</tr>
</tbody>
</table>

Maximum likelihood method writes the sequence sites with over 95% probability with upper case, sites with 50-95% probability with lower case, and those with less than 50% probability with an ambiguity code.

[parsimony method]

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Any Steps?</th>
<th>State at upper node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>yes</td>
<td>GTTCAGGcGCT ?GGGcATAAA AGGCAGAGGCA RGKY?AGCTD</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>yes</td>
<td>GTCCAGGGcGCT -GGGcATAAA AGNCAGVGCA RGGYcAKCTR</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>yes</td>
<td>GTcVCCAGGCGT -?CAcVDGD TcGCAGCVCA DGGBCAKCAR</td>
</tr>
<tr>
<td>Frog</td>
<td>yes</td>
<td>CTCACAcTTTg GGGgATGGGc TTGACCgACA TGATGGTAG GCTGgCACA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
<td>GACGgcCgGCT --CACCAGCg TGCTgATCCA ACGGCCcAGAC</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>yes</td>
<td>AGCCAGGcGCT -GGGcATAAA AGTCAGGGGA GAGCccAGAC</td>
<td></td>
</tr>
<tr>
<td>Opossum</td>
<td>yes</td>
<td>GTTTGGGGGC CAGGGATAAA AGGCAGAGGCT AGATTAGTTT cAGCAGCTA</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>yes</td>
<td>GTTCAGGACT TGGGCATAAA AGGCAGAGCA GGGc-AGCTG</td>
<td></td>
</tr>
</tbody>
</table>

If the parsimony inferred state is "?" or an ambiguity code, there are multiple equally parsimonious states; the user has to work these out by hand. In addition, "?" means that a deletion might or might not have happened.

Statistical tests of trees

Statistical tests can be performed for both parsimony and maximum likelihood trees. The tests are performed by putting multiple trees in the "intree" file. Actually, the tests are automatically performed, if there are multiple trees in the "intree" file:

```plaintext
((Frog,Chicken),Human),Opossum,Rabbit);
((Frog,Chicken),Human),Opossum,Rabbit);
((Frog,Opossum),Human),Opossum,Rabbit);
```
Parsimony program dnapars performs a modified Templeton test. It is closely parallel to a test using log likelihood differences, and uses the mean and variance of step differences between trees, taken across sites. If the mean is more than 1.96 standard deviations different then the trees are declared significantly different. The program prints out a table of the steps for each tree, the differences of each from the best one, the variance of that quantity as determined by the step differences at individual sites, and a conclusion as to whether that tree is or is not significantly worse than the best one. (Felsenstein, PHYLIP documentation)

This test finds the best tree among the competing hypotheses. However, the results are not corrected for multiple comparisons, and the results need still to be interpreted with caution.

<table>
<thead>
<tr>
<th>Tree</th>
<th>Steps</th>
<th>Diff Steps</th>
<th>Its S.D.</th>
<th>Significantly worse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3134.0</td>
<td>38.0</td>
<td>18.2807</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>3194.0</td>
<td>98.0</td>
<td>15.3665</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>3096.0</td>
<td>&lt;------ best</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3107.0</td>
<td>11.0</td>
<td>18.3081</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>3124.0</td>
<td>28.0</td>
<td>18.5524</td>
<td>No</td>
</tr>
</tbody>
</table>

Maximum likelihood programs perform a Kishino-Hasegawa test. If the "u" (User Tree) option is used and more than one tree is supplied, and the program is not told to assume autocorrelation between the rates at different sites, the program also performs a statistical test of each of these trees against the one with highest likelihood. This test uses the mean and variance of log-likelihood differences between trees, taken across sites. If the mean is more than 1.96 standard deviations different then the trees are declared significantly different. This use of the empirical variance of log-likelihood differences is more robust and nonparametric than the classical likelihood ratio test, and may to some extent compensate for the any lack of realism in the model underlying this program. The program prints out a table of the log-likelihoods of each tree, the differences of each from the highest one, the variance of that quantity as determined by the log-likelihood differences at individual sites, and a conclusion as to whether that tree is or is not significantly worse than the best one. However the Kishino-Hasegawa-Templeton test is not available if we assume that there is autocorrelation of rates at neighboring sites (option A) and is not done in those cases. (Felsenstein, PHYLIP documentation)

<table>
<thead>
<tr>
<th>Tree</th>
<th>Ln L</th>
<th>Diff Ln L</th>
<th>Its S.D.</th>
<th>Significantly worse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−9711.73593</td>
<td>−0.49089</td>
<td>1.0214</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>−9738.53093</td>
<td>−27.28588</td>
<td>7.7202</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>−9730.79910</td>
<td>−19.55405</td>
<td>8.7519</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>−9711.24505</td>
<td>&lt;------ best</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>−9725.82664</td>
<td>−14.58159</td>
<td>9.4918</td>
<td>No</td>
</tr>
</tbody>
</table>

LogDet-distance
LogDet-distance has been developed to account for the base frequency differences between lineages. However, the LogDet-distance does not give a reliable tree, when there are large rate differences between sites in the sequence.
LogDet-distances would be usable when the base frequencies in different lineages are not constant. In these cases, LogDet distances often outperform maximum likelihood method.

How to test for base frequency heterogeneity? `dnaml` writes a short table about the empirical base frequencies in the current dataset. The downside is that these frequencies can not be computed for only two sequences. Here is an example of base frequencies calculated for three different sets of three taxons:

\[
\begin{align*}
A & \quad 0.28378 \\
C & \quad 0.19595 \\
G & \quad 0.31081 \\
T(U) & \quad 0.20946 \\
\end{align*}
\]

\[
\begin{align*}
A & \quad 0.27027 \\
C & \quad 0.23649 \\
G & \quad 0.27703 \\
T(U) & \quad 0.21622 \\
\end{align*}
\]

\[
\begin{align*}
A & \quad 0.25850 \\
C & \quad 0.29252 \\
G & \quad 0.26531 \\
T(U) & \quad 0.18367 \\
\end{align*}
\]

There are some differences between lineages, but not too large (about 5%), and the usual distance method should do fine. However, this estimation approach fast becomes complicated when the number of sequences goes up.

One limitation of the LogDet distance is that it may be infinite sometimes, if there are too many changes between certain pairs of nucleotides. This can be particularly noticeable with distances computed from bootstrapped sequences.

**Computing topological distances between trees**

Topological distances can be computed with the program `treedist`. The Symmetric Distance is computed by considering each of the branches of the two trees. This does not use branch length information, only the tree topologies. It must also be borne in mind that the distance does not have any immediate statistical interpretation -- we cannot say whether a larger distance is significantly larger than a smaller one. (Felsenstein, PHYLIP documentation)

Each branch divides the set of species into two groups -- the ones connected to one end of the branch and the ones connected to the other. This makes a partition of the full set of species. (in Newick notation) (Felsenstein, PHYLIP documentation)

\[
((A, C), (D, (B, E)))
\]

has two internal branches. One induces the partition \{A, C | B, D, E\} and the other induces the partition \{A, C, D | B, E\}. A different tree with the same set of species, (Felsenstein, PHYLIP documentation)

\[
(((A, D), C), (B, E))
\]
has internal branches that correspond to the two partitions \{A, C, D \mid B, E\} and \{A, D \mid B, C, E\}. Note that the other branches, all of which are external branches, induce partitions that separate one species from all the others. Thus there are 5 partitions like this: \{C \mid A, B, D, E\} on each of these trees. These are always present on all trees, provided that each tree has each species at the end of its own branch. (Felsenstein, PHYLIP documentation)

The Symmetric Distance is simply a count of how many partitions there are, among the two trees, that are on one tree and not on the other. In the example above there are two partitions, \{A, C \mid B, D, E\} and \{A, D \mid B, C, E\}, each of which is present on only one of the two trees. The Symmetric Distance between the two trees is therefore 2. When the two trees are fully resolved bifurcating trees, their symmetric distance must be an even number; it can range from 0 to twice the number of internal branches, which for \textit{n} species is 4\textit{n}-6. (Felsenstein, PHYLIP documentation)

The input file is a standard "intree":

```
8
(((Frog,Chicken),Human),Opossum,Rabbit);
(((Frog,Human),Chicken),Opossum,Rabbit);
(((Frog,Chicken),Human),Opossum,Rabbit);
(((Frog,Opossum),Human),Chicken,Rabbit);
(((Frog,Chicken),Human),Opossum,Rabbit);
(((Frog,Chicken),Rabbit),Opossum,Human);
(((Frog,Chicken),Human),Opossum,Rabbit);
(((Frog,Rabbit),Human),Opossum,Chicken);
```

The treedist writes a menu:

Tree distance program, version 3.61

Settings for this run:
D Distance Type: Branch Score Distance
O Outgroup root: No, use as outgroup species 1
R Trees to be treated as Rooted: No
T Terminal type (IBM PC, ANSI, none): IBM PC
1 Print indications of progress of run: Yes
2 Tree distance submenu: Distance between adjacent pairs

Are these settings correct? (type Y or the letter for one to change)

Invoking the option "2" let's you to specify which way the trees are compared:

Tree Pairing Submenu:
A Distances between adjacent pairs in tree file.
P Distances between all possible pairs in tree file.
C Distances between corresponding pairs in one tree file and other.
L Distances between all pairs in one tree file and another.

Choose one: (A,P,C,L)
The distances are calculated for pairs of trees by default:

Symmetric differences between adjacent pairs of trees:

Trees 1 and 2: 2
Trees 3 and 4: 4
Trees 5 and 6: 2
Trees 7 and 8: 4

Program treedist is handy when there are multiple trees, for example, equally parsimonious trees, and pairwise comparisons need to be made fast. As is obvious from the example above, the pairwise distance of two means one swapping of two terminal branches (two sequences). If we are interested in the taxonomical relationships between the taxa, this swapping does not affect the classification (because those two taxa still belong to the same clade). See the example below:

User trees:

\[
5
(((Frog,Chicken),Human),Opossum,Rabbit);
(((Frog,Human),Chicken),Opossum,Rabbit);
(((Frog,Opossum),Human),Chicken,Rabbit);
(((Frog,Chicken),Rabbit),Opossum,Human);
(((Frog,Rabbit),Human),Opossum,Chicken);
\]

Pairwise distances:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Templeton statistical test results:

<table>
<thead>
<tr>
<th>Tree</th>
<th>Steps</th>
<th>Diff Steps</th>
<th>Its S.D.</th>
<th>Significantly worse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3134.0</td>
<td>38.0</td>
<td>18.2807</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>3194.0</td>
<td>98.0</td>
<td>15.3665</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>3096.0</td>
<td>&lt;-------- best</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3107.0</td>
<td>11.0</td>
<td>18.3081</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>3124.0</td>
<td>28.0</td>
<td>18.5524</td>
<td>No</td>
</tr>
</tbody>
</table>

Compare the user trees 1 and 2. Their pairwise distance is 2, which is self-evident: Human and Chicken have switched their places. This does not affect the taxonomical relationships, if we assume that Frog, Chicken and Human form a monophyletic clade.

On the basis of Templeton test we can't really decide that the tree 3 is statistically significantly the best tree. Therefore we consider all the trees 3-5 as equally parsimonious hypothesis. In this kind of case, it would be wise to pick the tree with the shortest pairwise distance (preferably 2) from the competing trees. This is because, if the we make a taxonomic desicion based on this selected
tree (with a distance of 2), it would not change, if the true tree is in future find to be some other (not the selected) of the competing trees.

**Weighting**
Weights can be used to analyze different subsets of characters (by weighting the rest as zero). For example, it might be of interest to compare the trees inferred from the first, second and the third codon positions. This can be acquired by using the weights. The weights are saved in a file named "weights", and the file should contain a text string of weights for all the sequence sites. For example, the weight-pattern given below will use only the third codon position for inferring the tree.

```
001001001001001001001001001001001001001001001001001
```

Weights are also handy, if you want to analyze different parts of the sequences, for example, only conserved areas of the protein. You don't need to edit the original datafiles if you just create new weights.

You can also check for the uniformity of the substitution rates of different codon positions by using weights. Create three weight-files, where you specify to include only the first, second or the third codon positions in the analysis:

- First positions: 100100100
- Second positions: 010010010
- Third positions: 001001001

These weight-specifications must be exactly as long as your sequence is. Otherwise you will get into trouble. Then run the program dnapars with the same material using the option "w" once with every weight-specifications, and note the number of changes:

- All positions: 49 changes
- First positions: 20 changes
- Second positions: 12 changes
- Third positions: 17 changes

It now becomes visible that there are different numbers of changes in different codon positions. It seems that the second position has much smaller number of changes than other positions. This is a reasonable assumption, because the substitutions in the second codon position more often lead to an amino acid change than substitutions in the first position.

In the example, the first and third codon position have nearly the same number of changes. It also reasonable to assume that the third codon position has more changes than the first, but this assumption was not supported by the data in our example.

Why should we check for the unequal rate of substitution in different positions? Because, if there are some evolutionary constraints for the substitutions, they would become visible this way.
Another reason is to check for the saturation of the substitutions in different codon positions. If there are large differences between the number of changes, especially, if the number of substitutions in the third codon positions is high, the saturation is a likely explanation. In the case of saturation, the DNA sequence including the third position may give erroneous results, and it could be better to use protein sequences or the DNA sequence comprising of only the first and the second codon positions.

Note that the parsimony method mentioned above does not count all the possible positions. It only includes parsimony informative positions, and thus the estimated frequencies of changes in different positions might be misleading. However, this method can be used quite effectively with long sequence stretches.

Another method for testing for the sequence site rate heterogeneity is to calculate pairwise distances using the different codon sites (program dnadist):

### First positions:

<table>
<thead>
<tr>
<th></th>
<th>Rabbit</th>
<th>Human</th>
<th>Opossum</th>
<th>Chicken</th>
<th>Frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0000</td>
<td>0.1578</td>
<td>1.4088</td>
<td>0.5954</td>
<td>0.8499</td>
</tr>
</tbody>
</table>

### Second positions:

<table>
<thead>
<tr>
<th></th>
<th>Rabbit</th>
<th>Human</th>
<th>Opossum</th>
<th>Chicken</th>
<th>Frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0000</td>
<td>0.0754</td>
<td>0.2923</td>
<td>0.6328</td>
<td>0.8892</td>
</tr>
</tbody>
</table>

### Third positions:

<table>
<thead>
<tr>
<th></th>
<th>Rabbit</th>
<th>Human</th>
<th>Opossum</th>
<th>Chicken</th>
<th>Frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0000</td>
<td>0.4062</td>
<td>0.5623</td>
<td>0.8167</td>
<td>1.2231</td>
</tr>
</tbody>
</table>

This method can only be used in Phylip version 3.6a2, because we need to get the uncorrected pairwise distances, which is not possible in version 3.6a1.

After calculating the pairwise distances, we can check whether the number of substitutions seems to differ between codon position, which it in our example most certainly does.

Note that, if the species are not closely related (take, for example, human and frog) the sequences might have evolved so, that there actually are more aminoacid changes than silent substitutions. If the species are assumed to be closely related, this pairwise distance matrix can be used also as a prescreening method of the validity of molecular clock (before testing it by dnaml and dnamlk). Then we can form different groups of species with which to test the clock (e.g., closely and distantly related).
**Dnaml, HMM, gamma distribution and rate heterogenity**

Program dnaml implements two different layers of base substitution rate heterogenity:

**Settings for this run:**

<table>
<thead>
<tr>
<th>Option (short)</th>
<th>Description</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Search for best tree?</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>Transition/transversion ratio</td>
<td>2.0000</td>
</tr>
<tr>
<td>F</td>
<td>Use empirical base frequencies?</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>One category of sites?</td>
<td>Yes</td>
</tr>
<tr>
<td>R</td>
<td>Rate variation among sites?</td>
<td>constant rate</td>
</tr>
<tr>
<td>W</td>
<td>Sites weighted?</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>Speedier but rougher analysis?</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>Global rearrangements?</td>
<td>No</td>
</tr>
<tr>
<td>J</td>
<td>Randomize input order of sequences?</td>
<td>No. Use input order</td>
</tr>
<tr>
<td>O</td>
<td>Outgroup root?</td>
<td>No, use as outgroup species 1</td>
</tr>
<tr>
<td>M</td>
<td>Analyze multiple data sets?</td>
<td>No</td>
</tr>
<tr>
<td>I</td>
<td>Input sequences interleaved?</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>Terminal type (IBM PC, ANSI, none)?</td>
<td>IBM PC</td>
</tr>
<tr>
<td>1</td>
<td>Print out the data at start of run</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Print indications of progress of run</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Print out tree</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Write out trees onto tree file?</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Reconstruct hypothetical sequences?</td>
<td>No</td>
</tr>
</tbody>
</table>

The first layer model the rate heterogenity by a hidden Markov model (HMM). A specific HMM is constructed for every sequence site on the basis of the observed data. This is done automatically, and dnaml may not work well with a small number of sequences (less than ten), because there is not enough data for the accurate HMM estimation. (Felsenstein, PHYLIP documentation)

HMM allows us to specify with option "c" to the program that there will be a number of different possible evolutionary rates, what the prior probabilities of occurrence of each is, and what the average length of a patch of sites all having the same rate. The program then computes the likelihood by summing it over all possible assignments of rates to sites, weighting each by its prior probability of occurrence. There is also a possibility to set that the rates in adjacent sites are correlated with each other with option "a". (Felsenstein, PHYLIP documentation)

Another layer of rate variation is also available. The user can assign categories of rates to each site (for example, we might want first, second, and third codon positions in a protein coding sequence to be three different categories. This is done with the categories input file and the C option. We then specify (using the menu) the relative rates of evolution of sites in the different categories. For example, we might specify that first, second, and third positions evolve at relative rates of 1.0, 0.8, and 2.7. (Felsenstein, PHYLIP documentation)

There is also a possibility to change the gamma-distribution shape parameter with option "r". This will estimate the gamma-corrected distances between OTUs with a HMM model. Gamma-corrected distances can be used in addition to the aforementioned categories (option "c").

At the moment the gamma-parameter can not be directly estimated, but it can be inferred by an iteration method described in the section Estimating the transition/transversion ratio. After the iteration, the best tree can be compared to the tree without rate heterogenity by the likelihood.
ratio test with df=1 (see, Testing molecular clock) or by Kishino-Hasegawa test using user trees (see, Statistical tests of trees).

If both user-assigned rate categories (with categories file) and regional rate variation (the Hidden Markov Model rates) are allowed, the program assumes that the actual rate at a site is the product of the user-assigned category rate and the Hidden Markov Model regional rate. This may not always make perfect biological sense: it would be more natural to assume some upper bound to the rate. Nevertheless you may want to use both types of rate variation.

**Multiple outgroups**

It's not a feature but is not too hard to do in many of the programs. In parsimony programs like mix, for which the “w” (weights) and “a” (Ancestral states) options are available, and weights can be larger than 1, all you need to do is: (Felsenstein, PHYLIP documentation)

(a) In mix, make up an extra character with states 0 for all the outgroups and 1 for all the ingroups. If using dnapars the ingroup can have (say) "G" and the outgroup "A".
(b) Assign this character an enormous weight (such as Z for 35) using the “w” option, all other characters getting weight 1, or whatever weight they had before.
(c) If it is available, Use the “a” (Ancestral states) option to designate that for that new character the state found in the outgroup is the ancestral state.
(d) In mix do not use the “o” (Outgroup) option.
(e) After the tree is found, the designated ingroup should have been held together by the fake character. The tree will be rooted somewhere in the outgroup (the program may or may not have a preference for one place in the outgroup over another). Make sure that you subtract from the total number of steps on the tree all steps in the new character.

In programs like dnapars, you cannot use this method as weights of sites cannot be greater than 1. But you do an analogous trick, by adding a largish number of extra sites to the data, with one nucleotide state ("A") for the ingroup and another ("G") for the outgroup. You will then have to use retree to manually reroot the tree in the desired place.

**Error messages**

Here are some of the most commonly encountered error messages, and what to do to correct them. The first three are not actually error messages at all, but an essential part of the normal function of the programs.

1. There is no infile in the directory you are running the program from, and the program asks for the name of the input file. This is easily corrected: Type in the name of the input file (sequence alignment file).

    dnapars.exe: can't find input file "infile"
    Please enter a new file name>
2. There is already an “outfile” in the same directory you are running the program from. You have
to decide whether to replace (overwrite) it, append it, or quit. You can also specify a new outfile
name.

dnapars.exe: the file "outfile" that you wanted to
use as output file already exists.
Do you want to Replace it, Append to it,
write to a new File, or Quit?
(please type R, A, F, or Q)

3. There is already an “outtree” in the same directory you are running the program from. You
have to decide whether to replace (overwrite) it, append it, or quit. You can also specify a new
outtree name.

dnapars.exe: the file "outtree" that you wanted to
use as output tree file already exists.
Do you want to Replace it, Append to it,
write to a new File, or Quit?
(please type R, A, F, or Q)

4. There is probably an “infile” in the same directory you are running the program from. The
problem is that this infile is in a format that the current program can’t use. For example, you
might have renamed a distance matrix as infile when creating neighbor joining trees. You might
now be using dnapars program, which does not know how to read distance matrix, because it
expects to find sequences in the file. Rename or remove the infile, and the error should disappear.

ERROR: a function asked for an inappropriate amount of memory: -4 bytes
This can mean one of two things:
1. The input file is incorrect (perhaps it was not saved as Text Only),
2. There is a bug in the program.
Please check your input file carefully.
If it seems to be a bug, please mail joe@gs.washington.edu
with the name of the program, your computer system type,
a full description of the problem, and with the input data file.
(which should be in the body of the message, not as an Attachment).
Hit Enter or Return to close program.
You may have to hit Enter or Return twice.

5. You are probably trying to use a wrong kind of data in the current program. This error message
is related to the sequence type: you have used amino acid sequences as input in the DNA
sequence analysis program. Use the correct input file, and the error should disappears.

ERROR: bad base: F at site 1 of species 1
Hit Enter or Return to close program.
You may have to hit Enter or Return twice.

A similar kind of error message is the following one, which is corrected in a similar fashion.

The infile is of the wrong type
Hit Enter or Return to close program.
You may have to hit Enter or Return twice.
Also this error is created with using the wrong kind of input into the program:

Unexpected End of File
Hit Enter or Return to close program.
You may have to hit Enter or Return twice.

Scripting

Scripting can be used for automating some analyses, when needed. It is especially attractive in UNIX / Linux system where jobs can be submitted to a queue. It is also a good idea in Windows / DOS environment, for example, if several analyses need to be run over the weekend: script can do the analysis during weekend and organize the results so that they are easily checked by human eye on Monday morning. Scripting means that a file, which contains a list directives is created, and instead of running the individual programs, the script is executed.

Scripting in UNIX

Scripting in UNIX is much more simple than in DOS. Let’s create an example script which runs dnaml analysis for the dataset alveolata.phy. First, we need to find out, which are the commands and options we need for running dnaml, so start the program. Let’s also start the work in an empty directory, where outfiles or outtrees are not present from previous analyses, but which contains the sequence alignment file and the appropriate phylip program (here dnaml). When running, dnaml first asks for a filename, and then the menu appears. We want to use taxon 8 as an outgroup in this example, so we invoke option O, and give it a number 8. After that, we want to run the analysis, which starts in dnaml by typing Y. Now our scripts looks like following:

```bash
#!bin/csh/
dnaml <<EOF
alveolata.phy
O
8
y
EOF
```

Save the script in a file called batch (you can modify this), and submit it for running by typing “source batch” in the command prompt.

Scripting in DOS

Let’s next do the same analysis using scripts in DOS. In DOS we need two files, the batch, which starts the run and another file, which contains all the options to be used as input in dnaml. In DOS batch files have an identifier .bat, and make sure you save the file with this extension. Otherwise DOS will not run the script at all!

So, first we create the file batch.bat in the empty directory containing only the sequence alignment and the program dnaml. The file contains just one line, which tells the computer to run dnaml
from the same directory, and that file input.txt contains the options for the dnaml run. Batch.bat looks like following:

dnaml < input.txt

If you like to save the text dnaml normally writes on the screen in a file called screenout.txt, use the following line instead:

dnaml < input.txt > screenout.txt

Now the file input.txt contains the same sequence of options as the batch file created for UNIX analyses, and it looks as follows:

alveolata.phy
0
8
Y

You can start the dnaml -script in DOS by double clicking on its icon.

More advanced scripts

I like using scripts in DOS for doing multiple analyses, because it is easier to modify the batch-file than to run several programs separately. The following DOS script runs dnaml for the dataset (sequence alignment) alveolata.phy, calculates topological distance between all the best trees (see Computing topological distances between trees) and finally performs the Templeton test (see Statistical tests of trees).

The file batch.bat looks like this:

dnaml < input1.txt > screenout1.txt
copy outtree parsimony-tree-outtree.txt
rename outtree intree
rename outfile parsimony-tree-outfile.txt
treedist <input2.txt > screenout2.txt
rename outfile treedists-outfile.txt
dnaml < input3.txt > screenout3.txt

The settings for individual programs are in the files input1.txt, input2.txt and input3.txt. Input1.txt:

alveolata.phy
0
8
Y
After creating these four files, start the run by double-clicking on the batch.bat. The results appear in four separate files: parsimony-tree-outtree.txt and parsimony-tree-outfile.txt (trees from initial parsimony analysis), treedists-outfile.txt (topological distances), and templeton-outfile.txt (Templeton’s test).

**Recommendations**

These recommendation cover some aspects of the actual phylogenetic data analysis that were not discussed the examples above. You should adapt the data analysis recommendations here, because they highlight some of the most commonly encountered problems.

**Pragmatic warnings (Brian Golding, McMaster University)**

1. Apply several different algorithms to your data set. Each one will provide a different picture of the phylogenetic history reflecting the assumptions of the methods.
2. Bootstrap or jackknife to sample your data. These are techniques to create new data sets either by sampling with replacement from the original set or by successively dropping individual data points. They will help to determine how sensitive the phylogenetic history is to changes in the data set (preferably the data should also be aligned all over again with the bootstrapped data).
3. If the data and tree inference technique were ideal, analysing any two subsets of taxa would yield congruent trees (i.e., the trees would be identical after pruning taxa absent from one or both trees). Try this and see what happens for different subsets.
4. If the tree changes dramatically when a single OTU is dropped this is usually an indication that that OTU is causing systematic errors (such as would be caused by a significantly different rate of change).
5. Worry about long unbranched lineages and any subtrees on either side of long branches. Long branches tend to attract each other !!!
6. Remember that these are gene trees and hence the trees from different genes may or may not be the same. If your taxa are each sufficiently diverged then the trees should be similar. If not
then check for non-orthologous genes, check for lateral gene transfer or for other events that would cause systematic errors.

7. Always include more than one outgroup taxa. In this way you can check that the outgroups are indeed “out”.

8. If possible choose your outgroup species such that they are evenly spaced on the tree. You will obtain more reliable information from these. Two outgroups that are closely related to each other will not add much information.

9. Even if you are interested in the relationships of just a few taxa it is best to include as many intermediate taxa as possible. These will help to highlight the multiple substitutions that confound any analysis.

10. Because large branch lengths confound many methods, one should limit an analysis to those sequence regions that exclude the most variable positions.

**Pitfalls (modified from PAUP documentation, Swofford 2002)**

“I have a sequence data set for which I would like to infer the phylogeny. What is a sequence of analyses that I can perform that will cover most potential pitfalls I am likely to encounter?”

The first analysis uses the criterion of maximum parsimony to obtain a tree (or set of trees), which are then saved to a tree file. The second analysis uses the minimum evolution criterion in conjunction with LogDet/paralinear pairwise distances and saves the resulting tree(s) in a tree file. The third analysis makes use of the maximum likelihood criterion in conjunction with the F84-gamma substitution model. Estimates of the tratio (the transition/transversion ratio) parameter and the gamma shape parameter are obtained by dnaml iteration.

Each phylogeny method has its Achilles Heel. Maximum parsimony can be mislead if there is too much heterogeneity in substitution rates among lineages (the classic "long edges attract" problem) in the underlying true phylogeny. Minimum evolution using LogDet distances can be mislead if there is too much site-to-site rate heterogeneity, or if some of the pairwise distances are undefined. Maximum likelihood under the F84-gamma model can be mislead if parameters that are assumed to be constant across the phylogeny (such as the tratio or base frequencies) actually vary among lineages in the true phylogeny.

Because of these inherent weaknesses in individual methods, it is a good idea to try several methods that have strengths in different areas. If you get the same tree under all methods, then you are in good shape because apparently there are no major pitfalls in your data. Of course, there may be a major unknown pitfall affecting all methods, but there is not much you can do about that. You may get trees that are not identical, but are also not significantly different (in terms of data support) from one another. The Kishino-Hasegawa test can be used to see whether one tree is supported significantly less by the data than a second tree. The last possibility is that you get truly different trees from the different methods. In this case, it is in your best interest to examine these trees carefully for evidence that a particular method has fallen victim to its particular Achilles Heel. For example, if there is strong rate heterogeneity in your data (let's say the shape parameter is estimated to be 0.01), then the LogDet and parsimony trees fall under a certain
degree of suspicion compared to the likelihood tree, which should be relatively immune to this pitfall since the model used allows for rate heterogeneity. If the parsimony tree differs from the LogDet and likelihood tree, look for evidence of long branch (edge) attraction in the parsimony tree. If the LogDet tree differs from the parsimony and likelihood trees, see if the base frequencies vary considerably between tip taxa (a useful tool for this purpose is the basefreq command).

In other words, use Phylip as a tool for discovering what evolutionary factors are at work in your particular set of sequences, and use this knowledge to make an intelligent choice between the alternatives presented to you by different phylogeny methods.
## Phylip programs

### PHYLIP programs classified according to the material and method

<table>
<thead>
<tr>
<th></th>
<th>Maximum likelihood</th>
<th>Parsimony</th>
<th>Distance matrix</th>
<th>Lake's invariants</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DNA</strong></td>
<td>dnaml***</td>
<td>dnapars</td>
<td>dnadist*</td>
<td>dnaivnr</td>
<td>dnacomp</td>
</tr>
<tr>
<td></td>
<td>dnamlk****</td>
<td>dnapenny</td>
<td>Fitch***</td>
<td>Kitsch****</td>
<td>Seqboot</td>
</tr>
<tr>
<td></td>
<td>DNAmove*****</td>
<td></td>
<td>Neighbor**</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Protein</strong></td>
<td>Proml</td>
<td>Protpars</td>
<td>Protdist*</td>
<td></td>
<td>Seqboot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fitch***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kitsch****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neighbor**</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Restriction sites</strong></td>
<td>Restdist*</td>
<td></td>
<td>Fitch***</td>
<td></td>
<td>Seqboot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kitsch****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neighbor**</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Continuous characters</strong></td>
<td>Contml</td>
<td></td>
<td>Fitch***</td>
<td></td>
<td>Seqboot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kitsch****</td>
<td></td>
<td>Contrast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neighbor**</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Discrete characters</strong></td>
<td>Pars</td>
<td></td>
<td></td>
<td></td>
<td>Clique</td>
</tr>
<tr>
<td></td>
<td>Mix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penny</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Move*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dollop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dolpenny</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dolmove*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Tree drawing</strong></td>
<td>Drawgram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drawtree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consense</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treedist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* utilized for matrix calculation
** NJ and UPGMA
*** FM without molecular clock
**** FM with molecular clock
***** interactive tree building
Flow charts

The following data flow charts describe some basic analyses. Flow chart A describes a maximum likelihood analysis for DNA sequences. Flow chart B describes an analysis using neighbor joining method for DNA sequences. Flow chart C describes a bootstrapping analysis for DNA sequences using maximum likelihood as the analysis method.

A

alignment.phy → dnaml → drawgram →

B

alignment.phy → dnadist → neighbor → drawgram →

C

alignment.phy → seqboot → dnaml → consense →

In order to assess the reliability of the data using bootstrapping method, you should first make the conventional analysis (flow chart A) using whatever analysis method is suitable for your purposes. After that, you should perform bootstrapping analysis (flow chart C) using exactly the same analysis method you used for conventional analysis. Here, we have used program dnaml for maximum likelihood analyses, but it can be substituted with, e.g., dnapars for parsimony analysis or dnadist + neighbor for analysis using distance methods. Note that in bootstrapping analysis using dnaml, dnapars etc. it might not be advisable to use as many jumbles as in the conventional analysis, because the analysis programs will then perform a specified number of jumbles for every random sequence dataset, and that might take a very long time.
2. Character and rate analysis using phylogenies as analytical frameworks for rigorous understanding of the evolution of various traits or conditions of interest. 3. Ancestral Node or ROOT of the Tree Internal Nodes or Divergence Points (represent hypothetical ancestors of the taxa) Branches or Lineages Terminal Nodes A B C D E Represent the TAXA (genes, populations, species, etc.) used to infer the phylogeny Common Phylogenetic Tree Terminology.

21. Types of data used in phylogenetic inference: Character-based methods: Use the aligned characters, such as DNA or protein sequences, directly during tree inference. This is the most versatile and user-friendly phylogenetic analysis package currently available. Phylogenetic analysis is a powerful tool to study the relationships among sequences. From such relationships the origins, evolution, and possible changes in structural and functional properties of...

Branch Length File Format Sequence Format Distance Tree PHYLIP Package. These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves. Cite this protocol as: Retief J.D. (2000) Phylogenetic Analysis Using PHYLIP. In: Misener S., Krawetz S.A. (eds) Bioinformatics Methods and Protocols. Methods in Molecular Biology, vol 132.

POWER (PhylOgenetic Web Repeater) - allows users to carry out phylogenetic analysis on most programs of PHYLIP package repeatedly. POWER provide two pipelines to process the analysis. One of them includes multiple sequence alignment (MSA) at the beginning of the pipeline whereas the other begin phylogenetic analysis with aligned sequence. Very user friendly. (Reference: C.-Y. Lin. et al.) In addition, you can download a lineage file that includes the counts of all taxa for your primers and for the used reference. (Reference: Brandt, B.W. et al. 2012. Nucleic Acids Research 40:W82-W87).

On Jan 1, 2006, Jarno Tuimala published A primer to phylogenetic analysis using the PHYLIP package | Find, read and cite all the research you need on ResearchGate. Phylogenetic inferences were performed based on the JTT/F84 distance tables using the program neighbour of the PHYLIP package. 36 The symmetric algorithm compares the topologies of trees only, whereas the BSD algorithm accounts for the branch lengths. 34 PHYLIP is a package of phylogenetic programs written by Joe Felsenstein group and first released in 1980. The programs can infer phylogenies by parsimony, compatibility, distance matrix methods, and likelihood. One can also compute consensus trees, compute distances between trees, draw trees, resample data sets by bootstrapping or jackknifing, edit trees, and compute distance matrices. You probably won't use PHYLIP for conventional phylogenetic analysis as newer programs are much faster and often incorporate additional models of sequence evolution. However, some types of analyses available in PHYLIP are difficult to impossible to find in other programs. One other advantage of this package is its thorough, well organized, and up to date documentation.