Quality Protein Maize (QPM) in various locations has proved the superiority of QPM over normal maize in the feeding of rats (Sproule et al., 1988), pigs (Knabe et al., 1992; Okai et al., 1994), broiler and layer chickens (Bond et al., 1991; Liu et al., 1993). Quality protein maize was released in Ghana in the early 1990s by the Crops Research Institute, Kumasi. However, it has not been critically evaluated as a feed ingredient for layers. Osei et al. (1994) 156-162 Mertz E.T., Bates L.S., Nelson O.E., 1964. Mutant gene that changes protein composition and. increases lysine content of maize endosperm. Â Quality Protein Maize. National Academy Press, Washington, DC National Research Council, 1994. Nutrient Requirements of Poultry. 9th Revised Edition. Quality protein maize (QPM) contains the opaque-2 gene along with numerous modifiers for kernel hardness. Therefore, QPM is maize with high nutritive value of endosperm protein, with substantially higher content of two essential amino acids - lysine and tryptophan, and with good agronomical performances. Â As the rate of animal weight gain is doubled with QPM and portion viability is better, a part of normal maize production could be available for other purposes, such as, for example, ethanol production. Thus, breeding QPM is set as a challenge to produce high quality protein maize with high yield and other important agronomical traits, especially with today's food and feed demands and significance of energy crisis. Quality protein maize (QPM) is a family of maize varieties. QPM grain contains nearly twice as much lysine and tryptophan, amino acids that are essential for humans and monogastric animals but are limiting amino acids in grains. QPM is a product of conventional plant breeding (i.e., it is not genetically modified) and an example of biofortification. QPM was developed by Surinder Vasal and Evangelina Villegas at the International Maize and Wheat Improvement Center (CIMMYT) in the late 1990s. For their development of quality protein maize (QPM) has been based on use of the opaque-2 mutant, combined with intensive breeding work to increase yield and develop harder endosperm. The soft endosperm normally associated with opaque-2 is prone to insect and fungal damage. The basis for the enhanced amino acid balance in proteins from QPM is the relative reduction in the proportion of Î±-zein, a fraction of endosperm protein which is lysine-free. Â The endosperm of maize typically contains about 9% protein which is considered of poor quality on a protein efficiency ratio basis (low in the essential amino acids lysine and tryptophan). A maize mutant, opaque-2, was discovered which combines high levels of lysine and of tryptophan.