Design of
Solar Thermal Systems

Moustafa M. Elsayed
Mechanical Engineering Department,
King Abdulaziz University, Jeddah, Saudi Arabia

Ibrahim S. Taha
Mechanical Engineering Department,
Assuit University, Assiut, Egypt

Jaffar A. Sabbagh
Mechanical Engineering Department,
King Abdulaziz University
Jeddah, Saudi Arabia

Scientific Publishing Centre
King Abdulaziz University
P.O. Box 1540, Jeddah 21441
Saudi Arabia.
Preface

This book presents the design of solar thermal systems using mathematical modeling. The importance of mathematical modeling is continuously increasing because of the rapid spread in the use of computers as design tools. The book is thus prepared for those who are involved in the design, optimization, or evaluation of the performance of solar thermal systems.

The book is based on teaching notes for undergraduate and first year graduate courses for thermal engineering students. It is recommended as a text for senior undergraduate students or first year graduate students, and also as a reference book for engineers working in various solar thermal applications.

The book consists of 10 chapters. The first chapter reviews the world resources of energy and their classification and relation to solar energy. The second chapter reviews important topics in thermal radiation which are relevant to the subject of the book. The third chapter is concerned with the estimation of solar angles and the hourly, daily, and monthly average daily solar radiation. Mathematical equations are given to enable the designer of a solar thermal system to estimate the beam, diffuse, or total radiation on horizontal or tilted surfaces.

The transmission of solar radiation through transparent sheets of different material is treated in Chapter 4. This chapter gives mathematical equations to predict the radiation properties of multi-layer partially transparent sheets with or without an absorber plate. A computer program is included to enable the designer to estimate the radiation properties for several geometries of a stack of similar or nonsimilar transparent sheets with or without an absorber plate at any incidence angle. The program is useful in the design and optimization of flat plate collectors and solar concentrators, and can also be utilized by air conditioning engineers to estimate solar heat gain through transparent windows and doors.

Chapter 5 gives the design of flat plate collectors, and presents various types. Complete simulation of the collectors is given, and the various factors affecting their performance are discussed. A computer program is given to design and optimize the design parameters of the flat plate collectors. This program can also be used to evaluate the performance of flat plate collectors in off-design conditions.
Chapter 6 deals with solar desalination. The chapter will be helpful to those designing either roof-type or diffusion-type solar desalination systems, since it includes a more detailed description of these systems than most other solar energy textbooks. Analysis are given to predict the transient performance of the roof-type still. A computer program is given to assist the designer in predicting the effect of various design and operating conditions on the performance of the still. Various novel designs of roof-types stills are presented with the advantages and disadvantages of each. The chapter also gives the analysis of both the single effect and the multiple-effect diffusion-type still together with a brief presentation of the mass diffusion theory. Other methods of solar desalination are also discussed in the chapter.

The collection of solar energy at medium and high temperatures by solar concentrators is discussed in Chapter 7. Various types of concentrators are presented. Thermal analyses are given to show the important factors affecting the performance of solar concentrators. Different tracking modes are given. The material in this chapter will help the reader to select the type of solar concentrator most suitable for a particular application together with the adequate tracking mode. Details of the designing of intermittent tracking are given in the chapter. Readers interested in continuous tracking will find ample material in section 10.8 of Chapter 10.

In Chapter 8, the design of solar energy storage is considered. The first part of the chapter deals with storage methods, characteristics, location, and the evaluation of the storage process. Mathematical simulations of various types of sensible heat storage are carried out for low, intermediate, and high temperature applications. In particular, mathematical simulations are presented for the transient performance of the mixed liquid storage, underground liquid storage, and stratified liquid storage. With these simulations the reader of the chapter should be able to size the liquid storage tank required for a certain application. Designers of solid storage tanks will also find that the mathematical simulation of rock bed storage and its sizing are covered in the chapter. In addition, other techniques of solar energy storage such as low, intermediate, and high temperature phase change and chemical and mechanical storages are considered. The user of the simulation models given in this chapter should have a reasonable background in the finite difference numerical technique.

The solar-operated absorption cooling system is treated in Chapter 9. Both H₂O-LiBr and NH₃-H₂O absorption systems are considered. Different arrangements of solar-operated absorption cooling systems are given, together with the criteria to evaluate and compare these systems. Alternative combinations of absorption cooling systems, such as the dual series connected system and the two stage absorption cooling system, are presented. Mathematical simulations of both the H₂O-LiBr and NH₃-H₂O absorption machines are considered. A computer program is included to predict the performance of the absorption cooling machine in various design and operating conditions. An optimization procedure is given for the determination of the design parameters of the absorption cooling machine. The chapter also contains a brief description of the intermittent absorption cooling system.

Chapter 10 deals with solar power generation. The chapter includes the charac-
teristics required for the working fluids of the solar-operated Rankine cycle. Mathematical simulation is given for the Rankine cycle and selection of the various design parameters of the system is presented. The chapter also includes the performance of the solar-operated Rankine cycle (SORC) in various operating conditions. In addition, the engineering considerations for the selection of the various components of SORC are given. Analyses are also presented to select the optimum collector temperature for solar-operated power cycles. A sizeable section of the chapter is devoted to power tower technology, including material for the determination of the heliostat field layout, the determination of the tilt and orientation angle of each heliostat, and the sizing of the receiver.

The book adds considerably to engineering expertise in the design of solar thermal systems. Chapters 5 and 8 are relevant to the design of solar water heaters, swimming pool heating systems, and space heating. Chapter 6 will also assist in the design of solar desalination systems. Those involved in the design of solar operated absorption cooling systems should read Chapter 9 in addition to Chapter 8 and Chapters 5 or 7. Information on solar power generation is given in Chapter 10 and also in Chapters 7 and 8.

Authors

Jeddah
May 1986
Contents

Chapter 1: The World Energy Resources

1.1 The Sun ... 1
1.2 The World Energy Resources .. 2
 1.2.1 Coal ... 2
 1.2.2 Petroleum Oil and Natural Gas 3
 1.2.3 Shale Oil and Tar Sand .. 4
 1.2.4 Nuclear Fission .. 4
 1.2.5 Fast Breeder Reactor .. 4
 1.2.6 Nuclear Fusion Energy .. 5
 1.2.7 Hydraulic Power ... 5
 1.2.8 Wind Power .. 6
 1.2.9 Geothermal Energy .. 6
 1.2.10 Hydrogen Fuel .. 6
1.3 Solar Energy .. 6
References .. 10

Chapter 2: Thermal Radiation

2.1 Introduction .. 13
2.2 Radiation Properties .. 13
2.3 Opaque and Non-Opaque Materials 17
2.4 Selective Surfaces ... 19
2.5 Net Radiation Leaving a Gray Surface 24
2.6 Intensity of Radiation Leaving a Gray Surface 25
2.7 Radiation Exchange between Gray Surfaces 26
 2.7.1 Exchange between Two Surfaces 26
 2.7.2 Example: Four Surface Enclosures 28
 2.7.3 Estimation of Shape Factor 28
 2.7.4 Special Cases .. 29
2.8 Absorption and Emission of Radiation by Gases 34
2.9 Radiation Exchange between Two Gray Surfaces Through Absorbing and Transmitting Mediums 35
 2.9.1 One Absorbing and Transmitting Medium 35
 2.9.2 Two Absorbing and Transmitting Medium 37
Chapter 3: Solar Radiation

3.1 Introduction ... 41
3.2 Solar Angles ... 41
3.3 Extraterrestrial Solar Radiation .. 48
3.4 Depletion of Solar Radiation .. 51
3.5 Estimation of Solar Radiation Received by a Horizontal Surface .. 54
 3.5.1 Clear Sky Models .. 57
 3.5.1.1 ASHRAE Model (clear sky) .. 57
 3.5.1.2 Hottel Model .. 58
 3.5.2 Models Dependent on Local Solar Measurements 62
 3.5.2.1 Hourly Radiation .. 62
 3.5.2.2 Models to Estimate Daily Radiation 66
 3.5.2.3 Models to Estimate the Monthly-Average Daily Radiation .. 68
3.6 Estimation of Solar Radiation on a Tilted Surface 69
3.7 Atmospheric Radiation ... 74
3.8 Measurements of Solar Radiation ... 75
Nomenclature ... 76
Problems .. 77
References .. 80

Chapter 4: Optical Properties of Materials and Radiation Characteristics of Surfaces

4.1 Introduction ... 83
4.2 Reflectances and Transmittances of Interfaces and Plates 84
 4.2.1 Interface and Material Properties .. 84
 4.2.2 Effective Properties for a Plate ... 86
4.3 Effective Properties of a Stack of Plates 89
 4.3.1 Incident Radiation on the Outer Surface of the Stack 89
 4.3.2 Incident Radiation on the Inner Surface of the Stack 91
4.4 Effective Properties of an Absorber Plate with N-Cover: Incident Radiation on the Absorber Plate .. 96
 4.4.1 An Absorber with One Cover Plate 96
 4.4.2 An Absorber Plate with N-Covers 97
4.5 Effective Properties of an Absorber Plate with N-Cover: Incident Radiation on the Top Cover .. 99
4.6 Computer Programming ... 104
Nomenclature ... 116
Problems .. 117
References .. 117
Chapter 5: Flat Plate Collectors

5.1 Introduction ... 119
5.2 Types of Flat Plate Collectors .. 120
 5.2.1 Liquid Flat Plate Collectors .. 120
 5.2.2 Gas Flat Plate Collectors .. 121
5.3 Thermal Analysis of Flat Plate Collectors 122
 5.3.1 Introduction .. 122
 5.3.2 Specifications of the Collector and the Meteorological Parameters .. 124
 5.3.3 Radiation Processes in the Collector 126
 5.3.4 Energy Balance of Different Elements of Collector 130
 5.3.5 Analytical Method of Solution 135
 5.3.6 Empirical Formula for Top Loss Coefficient 144
 5.3.7 Total Loss Coefficient .. 145
 5.3.8 Local Temperature Across the Plate 146
 5.3.9 Collector Efficiency Factor 148
 5.3.10 Fluid Temperatures and Heat Removal Factor 149
 5.3.11 Average Plate Temperature 151
 5.3.12 Outlet Fluid Temperature 151
5.4 Factors Affecting the Performance of FPC 154
 5.4.1 Introduction .. 154
 5.4.2 Cover .. 154
 5.4.3 Absorber Plate .. 156
 5.4.4 Liquid Tubes .. 156
 5.4.5 Operating Conditions .. 156
 5.4.6 Conclusions .. 157
5.5 Simulation, Design, and Optimization of FPC 157
5.6 Simulation and Algorithm of Solution for Liquid FPC 158
 5.6.1 Nomenclature .. 159
 5.6.2 Data .. 161
 5.6.3 Steps of Calculation .. 161
 5.6.4 Algorithm for Assisting Subroutines 162
 5.6.5 Checked Program List in Basic Language 165
 5.6.6 Sample Output .. 177
5.7 Analysis of Solar Air Heaters .. 178

Problems .. 181
References .. 184

Chapter 6: Solar Desalination

6.1 Introduction ... 187
6.2 Definitions .. 188
6.3 Roof-Type Solar Stills (Basin-Type) ... 189
 6.3.1 Construction ... 189
 6.3.2 Thermal Analysis of the Still ... 193
6.4 Performance Prediction of Roof-Type Stills 198
 6.4.1 Generalized Procedure .. 199
 6.4.2 Morse-Read Chart ... 209
 6.4.3 Approximate Solution ... 211
6.5 The Maximum Efficiency of The Still ... 213
6.6 Effect of Various Parameters on the Performance of Roof-Type Stills 215
 6.6.1 Effect of Solar Radiation ... 215
 6.6.2 Effect of Ambient Temperature ... 215
 6.6.3 Effect of Wind Velocity .. 215
 6.6.4 Effect of Edge and Base Loss Coefficient 216
 6.6.5 Brine Depth ... 216
 6.6.6 Vapor Tightness .. 216
 6.6.7 Condensate Leakage ... 216
 6.6.8 Effect of Cover Slope ... 216
 6.6.9 Effect of Gap Distance between Water Surface and Cover 216
 6.6.10 Effect of Build-up of Reflecting Layers of Salt on Water Surface
 and Basin Linear ... 217
6.7 Novel Designs of Roof-Type Stills ... 217
 6.7.1 Double-Basin Still ... 217
 6.7.2 Basin-Type Stepped Solar Still .. 217
 6.7.3 Wick-Type Collector-Evaporator Still 219
 6.7.4 Vertical Microporous Evaporator Solar Still 220
 6.7.5 Cascade Solar Still ... 221
 6.7.6 Roof-Type Still with Treated Cover Surface 221
 6.7.7 Roof-Type Still with Cover Cooling 222
 6.7.8 Double-Effect Tilted Solar Still 222
6.8 Diffusion Stills ... 224
 6.8.1 Introduction to Mass Diffusion ... 224
 6.8.2 Thermal Analysis of Diffusion Stills 227
6.9 Multiple-Effect Diffusion Stills .. 231
6.10 Comparison of Transient Performance Predictions of a Single-Effect
 Diffusion Still with a Roof-Type Still 237
6.11 Economics of Solar Stills .. 243
6.12 Other Types of Solar Desalination Systems 246
 6.12.1 Forced Convection Stills ... 246
 6.12.2 Multiple Effect Humidification-Dehumidification 246
 6.12.3 Solar Water Recovery from Air ... 247
Nomenclature ... 248
Problems .. 249
References ... 253
Chapter 7: Concentrating Collectors

7.1 Introduction ... 255
7.2 Types of Concentrating Collectors ... 255
 7.2.1 Planar Reflector .. 259
 7.2.2 V-Trough Reflector .. 259
 7.2.3 Parabolic Reflector ... 259
 7.2.4 Compound Parabolic Concentrator 259
 7.2.5 Dish Reflector .. 261
 7.2.6 Heliostat Reflectors .. 262
 7.2.7 Lens Refractor .. 263
 7.2.8 Fresnel Lens Refractor .. 263
7.3 Important Factors ... 263
7.4 Concentration Ratio .. 263
 7.4.1 Definitions ... 263
 7.4.1.1 Aperture Area (A_{ap}) 264
 7.4.1.2 Absorber Area (A_{abs}) 264
 7.4.1.3 Acceptance Angle and Acceptance Half Angle 264
 7.4.1.4 Theoretical Concentration Ratio C 264
 7.4.1.5 Actual Concentration Ratio C_a 265
 7.4.2 Maximum Theoretical Concentration Ratio 265
 7.4.3 Ideal Concentrators .. 268
 7.4.4 Actual Concentrators ... 268
7.5 Tracking Modes ... 268
 7.5.1 Solar Profile Angle .. 270
 7.5.2 No Tracking Mode ... 270
 7.5.3 Intermittent Adjustment of Tilt Angle 272
 7.5.4 Continuous Tracking About One Axis 276
 7.5.5 Continuous Tracking About Two Axes 277
7.6 Thermal Analysis ... 277
Nomenclature .. 280
Problems ... 281
References .. 284

Chapter 8: Solar Energy Storage

8.1 General Concepts .. 285
 8.1.1 Storage Methods .. 285
 8.1.2 Storage Characteristics ... 287
 8.1.3 Storage Location .. 287
 8.1.4 Storage Efficiency .. 288
8.2 Low Temperature Sensible Storage 288
 8.2.1 Introduction ... 288
 8.2.2 Storage in Liquids ... 290
 8.2.2.1 Above Ground Liquid Storage 290
Chapter 9: Solar Operated Absorption Cooling Systems

9.1 Introduction .. 329
9.2 Basic Absorption Cooling Cycle .. 329
 9.2.1 Description of the Cycle ... 329
 9.2.2 Upper and Lower Limits for COP of Irreversible Absorption
 Cooling Cycle ... 332
 9.2.3 Desirable Characteristics of Refrigerant-Absorbent Solution 333
 9.2.4 Selection of Working Fluids for Solar Operated Absorption
 Cooling Cycle ... 336
 9.2.5 The H₂O-LiBr and NH₃–H₂O Absorption Cooling Machines 336
9.3 Different Arrangements of Solar-Operated Absorption Cooling Systems 341
9.4 Evaluation of Solar-Operated Absorption Cooling System 345
 9.4.1 System Thermal Ratio .. 345
 9.4.2 Specific Collector Area ... 348
9.5 Some Alternative Absorption Cooling Systems ... 348
 9.5.1 Dual Series-Connected System .. 351
Chapter 10: Solar Power Generation

10.1 Introduction .. 387

10.2 Thermodynamic Power Cycles 388

10.2.1 Ideal Rankine and Reheat Cycles 388

10.2.2 Ideal Air-Standard Otto and Diesel Cycles 389

10.2.3 Ideal Air-Standard Stirling and Ericson Cycles 390

10.2.4 Ideal Air-Standard Brayton Cycle 391

10.3 Solar-Operated Rankine Cycle 393

10.3.1 Selection of Working Fluid 393

10.3.2 Simulation of Solar Operated Rankine Cycle 395

10.3.3 Design Parameters of Solar Operated Rankine Cycle ... 398

10.3.3.1 Overall Fluid-to-Fluid Conductance of the Heat Transfer Elements .. 398

10.3.3.2 Thermal Capacity of External Flows 399

10.3.3.3 Efficiency of Rotating or Moving Elements 400

10.3.3.4 External Temperatures 400

10.3.4 Performance of Solar Operated Rankine Cycle 401

10.3.5 Engineering Consideration for the Selection of the Various Components of Rankine Cycle 401

10.3.5.1 Expanders and Pumps 401

10.3.5.2 Heat Exchangers .. 403

10.4 Power Generation Using Hybrid Heating of Rankine Cycle ... 404

10.5 Power Generation Using Organic Rankine Cycle Coupled to a Solar Pond .. 406

10.6 Power Generation Using the Brayton Cycle 406

10.7 Optimum Collector Temperature for the Solar-Operated Power Cycle .. 407
10.7.1 Low Temperature Solar Collectors ... 407
10.7.2 High Temperature Solar Collectors .. 408
10.7.3 Various Types of Solar Collectors .. 409
10.8 Power Tower Technology ... 409
 10.8.1 Concept ... 409
 10.8.2 Heliostat Field Layout .. 412
 10.8.3 Tilt Angles and Orientations of Heliostats 420
 10.8.4 Sizing of Receiver ... 424
 10.8.5 Types of Receivers ... 429
 10.8.6 Review of Some Central Receiver Systems 429
Nomenclature .. 429
Problems .. 432
References .. 433

Appendices
A. Hooke and Jeeves Pattern Search Optimization Technique 435
B. Equilibrium Property Data Equations for NH$_3$-H$_2$O Solution 439
C. Values of Latitude and Longitude Angles of Some Major Cities Around
 the World .. 441
The components that a solar thermal energy system needs in order to work. The main ones are solar collectors, a heat exchanger and an accumulator. The solar collector is a type of solar panel designed to take advantage of solar thermal energy. These elements capture solar radiation and convert it into thermal energy, into heat. They are often covered by glass. The glass that covers the collector not only protects the installation but also conserves heat. Solar thermal systems have become part of modern heating technology and reduce the consumption of fossil fuels. This protects the environment and lowers energy cost. This technical guide is designed to educate the homeowner, the installer, the engineer, and the architect on solar product offered by Bosch. It features descriptions of components, system sizing, and piping diagrams. The installations in this manual have been tried and tested by Bosch and were selected for their simplicity, energy savings, cost effectiveness, and comfort.

1.2 Free solar energy. The energy that is provided by the solar Thermal water heating systems capture the sun's energy in the form of heat which is transferred to hot water cylinders. Replacing the need to burn fuels such as gas, coal or wood. Depending on how much hot water you need, the hot water system you already have, your budget and where you are located there are a few ways you can put a system together.

Slimline Evacuated Tubes for Solar Thermal Hot Water: Have the dual benefit of high performance and flexible mounting. They are designed to operate at the low light levels found in the UK maximising solar gain even at freezing temperatures. For a system that performs well throughout the year in challenging conditions or off perfect mounting these slimline evacuated tube systems are hard to beat.

Top of page. Articles. Why use TRANSOL in design of solar thermal systems? For practical purposes, most of the solar thermal installations are sized according to the known F-Chart method, for practical reasons, economic and historical. We would like to highlight some inconsistencies of this habit. We will not explain in detail the F-Chart method, but basically it consists on 300 TRNSYS simulations of a solar thermal system model that responds to the following hydraulic system: F-CHART scheme. SCH_SC (Semi-Centralized Solar Thermal System). If we use this method of calculation, we observe the same behavior on the three schemes above. Clearly, this is not true, and also easily demonstrable. Plate heat exchangers are used for solar thermal systems with solar collector areas of 15 m² and more. They are made of parallel plates. In between the plates there is a counter flow of the heat transfer fluids.

3.3 Design of the solar membrane expansion vessel. In general it must be said that it is better to choose the expansion vessel rather too big than too small! The results of simulations of expansion vessels are often too optimistic. Certain processes in the solar thermal system, like the stagnation, have not (or not adequately) been taken into account. Please see in the following calculation method (that considers the influence of the stagnation) to the state of the art. statische Anlagenhöhe [bar].