Magnetic Resonance of Biomolecules

by P. F. Knowles, D. Marsh and H. W. E. Rattle
John Wiley and Sons; Chichester, Sussex, 1976
343 pages. Cloth; £ 9.75, $ 19.75. Paper £ 4.25, $ 8.75

This book aims to provide an introduction to the use of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy in biology. Both techniques have been widely applied to biological problems in recent years and a number of specialist texts exist, but this is the first book to provide a unified general introduction to the use of both methods.

The physical basis of the magnetic resonance experiment is outlined in a qualitative way in the first chapter. The remainder of the book is in two sections, treating NMR and ESR separately, but with a parallel chapter arrangement in each section. Thus for each technique there is first a discussion of the relation between the spectroscopic parameters and molecular structure and dynamics. This is followed by description of the apparatus and methods required to obtain a spectrum, a survey of biological applications and finally a chapter on more advanced instrumental methods.

In both the NMR and ESR sections, approximately equal space is devoted to detailed descriptions of instrumental methods and to discussions of the biological applications of the techniques. This is perhaps not an ideal balance for an introductory book, since the student will most probably want to know what kinds of questions the technique can answer before concerning himself too much with the details of spectrometer operation. Nonetheless, the ESR section, particularly, is a very readable introduction to the field, describing studies of metalloproteins, spin-labels and natural free-radicals briefly but clearly. The discussion of the biological applications of NMR is less satisfactory. Although a good range of examples is presented (with the exception of small molecule—protein interactions), many of them are rather out-of-date and the discussion is often too brief. For example, a description of the assignment of the 13C resonances of oxytocin is followed by a picture of its proposed conformation, without any discussion of the arguments by which the existence of this conformation was deduced from the 1H and 13C NMR spectra.

In the theoretical section relaxation phenomena and chemical exchange effects — topics which are of considerable importance in the biological applications of NMR — receive rather cursory treatment. There are few errors of fact, but a rather annoying number of typographical errors.

A study of this book will clearly not allow the biochemist to go away and do his own NMR or ESR experiments. However, it will give him a feeling for the kind of information which can be obtained and should allow him to understand, in general terms, many of the NMR and ESR papers in the biochemical literature. As a very readable first introduction to the field it is to be recommended.

G. C. K. Roberts
1H Nuclear magnetic resonance (NMR) relaxometry was exploited to investigate the dynamics of solid proteins. The relaxation experiments were performed at 37 °C over a broad frequency range, from approximately 10 kHz to 40 MHz. Two relaxation contributions to the overall 1H spin–lattice relaxation were revealed; they were associated with 1H–1H and 1H–14N magnetic dipole–dipole interactions, respectively. The 1H–1H relaxation contribution was interpreted in terms of three dynamical processes occurring on timescales of 10^−6 s, 10^−7 s, and 10^−8 s, respectively. The 1H–14N relaxation contribution is associated with magnetic resonance excitations in non-invasive observations of functional molecules in living cells or organisms. In this study, we aim to develop technologies for analyses of functions, localizations and tertiary structures of proteins in cells or organisms by using MR imaging, multi-dimensional NMR, and magnetic resonance force microscopy. Magnetic resonance, absorption or emission of electromagnetic radiation by electrons or atomic nuclei in response to the application of certain magnetic fields. The principles of magnetic resonance are applied in the laboratory to analyze the atomic and nuclear properties of matter.