sleep montage. In addition, it is clinically oriented and covers well both the basic and clinical aspects of the topic.

I think that ‘Sleep and Epilepsy: The Clinical Spectrum’ is one of the reference books that every neurologist interested in epilepsy and sleep will need to have available both for consultation and study.

J. Santamaria
Sleep Research Unit, Department of Neurology, Hospital Clinic, Villarroel, 170, Barcelona, 08036, Spain
doi:10.1016/S1388-2457(02)00420-0

Vision in the Brain

As a neurologist interested in disorders of visual attention, I often looked for a reference book covering the neurosciences of the visual system. Panagiotis G. Simos has achieved the impressive task of collecting in a book of 200 pages a state-of-art review of such an intimidating topic. As a further bonus, the book offers a final section on the development of the visual system which conveys information which is difficult to find in such a concise form. The author has managed to integrate evidence coming from such disparate research fields as histology, neurophysiology, brain imaging and neuropsychology.

After an introductory chapter dedicated to an overview of the methods of visual neuroscience and to terminological issues, there is ample review of general neuronal functioning and synaptic transmission. The third chapter deals with psychophysical findings, always with reference to ‘wet’ neurosciences. The following 3 chapters present the anatomy and physiology of the visual pathways, from the retina to the temporal and parietal visual association areas, with some useful reference to visual disorders (visual field defects, prosopagnosia). It is a pity that the author did not go a step further and address the relationship between visual association areas and more anterior brain regions, such as the frontal lobes. This would have offered a more general idea – if perhaps speculative – of brain functioning, and of its relation to attentional processes and visual consciousness. The final 3 chapters are dedicated to the development of the visual brain.

The book is written very clearly, and generously illustrated by 81 black and white diagrams, even if a few of them lack proper definition and several would have greatly benefited if in color (e.g. the illustration of brain activation during color processing, picturing two Mondrian displays that should be identical in all respects except that one is colored; in fact, they *are* identical to the reader, since both appear in shades of gray). A second edition should add an analytical index and correct a few minor errors, such as the lack of some references in the final list and the statement (page 153) that images are projected in front of the retina in hyperopia, and behind the retina in myopia (in fact, the reverse is true).

In conclusion, this book will constitute a useful and handy reference for students and professionals in the fields of visual neuroscience, psychology of perception and neuropsychology, and a valuable addition to the library of ophthalmologists, neurologists and neurophysiologists.

Paolo Bartolomeo
French Institute of Biomedical Research (Inserm)
Paris, France
doi:10.1016/S1388-2457(02)00422-4

- P.E. Registered Professional Engineer, Commonwealth of Virginia â€“ 1983; License No. 0402-013865.
- Lisse: Swets and Zeitlinger, 2002. 220 pp. Find, read and cite all the research you need on ResearchGate.

25 (10%) of 254 people had improved visual acuity in their amblyopic eye. These findings suggest there is some plasticity in the visual system of a few visually mature individuals with amblyopia, which warrants further study. Children should remain the focus of detection and treatment. Read more.