ANILITY: RESULTS OF INDUSTRIAL TESTS

A. A. Dobrynin¹,², A. M. Abdulganiev³, and I. A. Dobrynin²

¹Rosakkreditatsiya, 7 Vavilov Str., Moscow 117997, Russian Federation
²PiroVzryv, 7-1 Petra Romanova Str., Moscow 115193, Russian Federation
³PKF Stimul Ltd., village of Utsukul’, Dagestan, Russian Federation

Abstract: The results of industrial testing of mixed liquid explosives “Anility,” manufactured from nonexplosive components (dinitrogen tetroxide and liquid petroleum products) in the field of drilling and blasting. Mixed liquid explosives “Anility” are the analogues of mixed liquid explosives “VV GIMI,” which have been admitted by Gosgortekhnadzor for permanent use in 1993, but in mixed liquid explosives “Anility,” liquid petroleum products of higher quality are applied. The tests were carried out in 2016, in an industrial installation according to the project “Production drilling and blasting for loosening rock borehole and blast hole charges in the reconstruction of the road “Tsurib–Arčib,” “Bridge on 21 km,” Charodinskogo district, Republic of Dagestan, Makhachkala, 2015. Design parameters, calculated on the charges of Ammonite No. 6 GV, have been adjusted, namely, the distance between the charge and workings has been increased to reduce the weight of charges. High performance mixed liquid explosives “Anility” significantly reduced the volume of drilling works and specific consumption of explosives compared to the “Ammonite No. 6 GV.” This has increased the quality of rock crushing, and the output of “oversized” has decreased significantly. To improve the quality of drilling and blasting, contour blasting was used. During the test, the laboratory of ecological monitoring of the State University of the Republic of Dagestan has carried out ecological research aimed at studying the influence of drilling and blasting using mixed liquid explosives “Anility” on the environment. In January 2017, Rostekhnadzor issued a permit for permanent application of mixed liquid explosives “Anility” on the earth surface.

Keywords: mixed liquid explosives; industrial testing; project of drilling and blasting; contour blasting; reconstruction of road; environmental studies

References


Contributors

Dobrynin Aleksandr A. (b. 1957) — Candidate of Science in technology, expert of the highest qualification in industrial safety; expert, Rosakkreditatsiya, 7 Vavilov Str., Moscow 117997, Russian Federation; director, PiroVzryv, 7-1 Petra Romanova Str., Moscow 115193, Russian Federation; pirovzryv@mail.ru

Abdulganiev Ahmed M. (b. 1956) — General Director of PKF Stimul Ltd., village of Utsukul’, Dagestan, Russian Federation; stm-1995@yandex.ru

Dobrynin Ivan A. (b. 1981) — Candidate of Science in technology, expert in industrial safety, researcher, Pirovzryv, 7-1 Petra Romanova Str., Moscow 115193, Russian Federation; pirovzryv@mail.ru

Received January 31, 2017
The result of this test is a graph of load (amount of weight) versus displacement (amount it stretched). Since the amount of weight needed to stretch the material depends on the size of the material (and of course the properties of the material), comparison between materials can be very challenging. The ability to make a proper comparison can be very important to someone designing for structural applications where the material must withstand certain forces. Testing and Assessment - Understanding Test Quality - Concepts of Reliability and Validity. The test measures what it claims to measure. For example, a test of mental ability does in fact measure mental ability, and not some other characteristic. The test is job-relevant. In other words, the test measures one or more characteristics that are important to the job. By using the test, more effective employment decisions can be made about individuals. For example, an arithmetic test may help you to select qualified workers for a job that requires knowledge of arithmetic operations. The degree to which a test has these qualities is indicated by two technical properties: reliability and validity. Results of industrial tests A. A. Dobrynin, A. M. Abdulganiev, and I. A. Dobrynin P. 92-95.